Efficient Privacy-Preserving Machine Learning in Hierarchical Distributed System

被引:0
|
作者
Jia, Qi [1 ]
Guo, Linke [1 ]
Fang, Yuguang [2 ]
Wang, Guirong [3 ]
机构
[1] Binghamton Univ, Dept Elect & Comp Engn, Binghamton, NY 13850 USA
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[3] SUNY Upstate Med Univ, Dept Surg, Syracuse, NY 13210 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Efficiency; privacy; hierarchical distributed system; machine learning;
D O I
10.1109/TNSE.2018.2859420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the potential privacy leakage of data, it is infeasible to aggregate raw data from all data owners for the learning purpose. To tackle this problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes.
引用
收藏
页码:599 / 612
页数:14
相关论文
共 50 条
  • [21] Privacy-Preserving Distributed Machine Learning via Local Randomization and ADMM Perturbation
    Wang, Xin
    Ishii, Hideaki
    Du, Linkang
    Cheng, Peng
    Chen, Jiming
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4226 - 4241
  • [22] A Privacy-Preserving Distributed Machine Learning Protocol Based on Homomorphic Hash Authentication
    Hong, Yang
    Wang, Lisong
    Meng, Weizhi
    Cao, Jian
    Ge, Chunpeng
    Zhang, Qin
    Zhang, Rui
    NETWORK AND SYSTEM SECURITY, NSS 2022, 2022, 13787 : 374 - 386
  • [23] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [24] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [25] Privacy-Preserving Machine Learning on Apache Spark
    Brito, Claudia V.
    Ferreira, Pedro G.
    Portela, Bernardo L.
    Oliveira, Rui C.
    Paulo, Joao T.
    IEEE ACCESS, 2023, 11 : 127907 - 127930
  • [26] Privacy-preserving machine learning with tensor networks
    Pozas-Kerstjens, Alejandro
    Hernandez-Santana, Senaida
    Monturiol, Jose Ramon Pareja
    Lopez, Marco Castrillon
    Scarpa, Giannicola
    Gonzalez-Guillen, Carlos E.
    Perez-Garcia, David
    QUANTUM, 2024, 8
  • [27] Privacy-Preserving Machine Learning: Threats and Solutions
    Al-Rubaie, Mohammad
    Chang, J. Morris
    IEEE SECURITY & PRIVACY, 2019, 17 (02) : 49 - 58
  • [28] A Review of Privacy-Preserving Machine Learning Classification
    Wang, Andy
    Wang, Chen
    Bi, Meng
    Xu, Jian
    CLOUD COMPUTING AND SECURITY, PT IV, 2018, 11066 : 671 - 682
  • [29] Challenges of Privacy-Preserving Machine Learning in IoT
    Zheng, Mengyao
    Xu, Dixing
    Jiang, Linshan
    Gu, Chaojie
    Tan, Rui
    Cheng, Peng
    PROCEEDINGS OF THE 2019 INTERNATIONAL WORKSHOP ON CHALLENGES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR INTERNET OF THINGS (AICHALLENGEIOT '19), 2019, : 1 - 7
  • [30] Cryptographic Approaches for Privacy-Preserving Machine Learning
    Jiang Han
    Liu Yiran
    Song Xiangfu
    Wang Hao
    Zheng Zhihua
    Xu Qiuliang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (05) : 1068 - 1078