A deep learning based system for real-time detection and sorting of earthworm cocoons

被引:1
|
作者
Celik, Ali [1 ]
Uguz, Sinan [2 ]
机构
[1] Isparta Univ Appl Sci, Dept Mech Engn, Isparta, Turkey
[2] Isparta Univ Appl Sci, Dept Comp Engn, Isparta, Turkey
关键词
Object detection; vermicompost; earthworm cocoon; agriculture;
D O I
10.55730/1300-0632.3917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vermicompost, created by earthworms after eating and digesting organic waste, plays an important role as an organic fertiliser in sustainable agriculture. In this study, a deep learning-based smart system was developed to separate earthworm cocoons used in the production of vermicompost from the compost and return it to production. In the first stage of the study, a dataset containing 1000 images of cocoons was created. The cocoons in each image were labeled and training was performed using a deep learning architecture, one-stage and two-stage models. The models were trained over 2000 epochs with a learning rate of 0.01. From the experimental results, faster R-CNN with ResNet50-FPN model detected the earthworm cocoons better compared to other models. The best performance was obtained by this model with an average precision (AP) of 0.89. In the other stage of the study, the cocoons detected by the software were separated from the compost using a specially designed conveyor belt system. In this process, the detected cocoons are separated from the compost using 10 pneumatic valves that spray air at the separation point. The study is the first of its kind that enables earthworm cocoons to be returned to production with the use of a real-time intelligent system. It also contributes to the literature on small object detection using deep learning.
引用
收藏
页码:1980 / 1994
页数:15
相关论文
共 50 条
  • [21] Deep Learning Based, Real-Time Object Detection for Autonomous Driving
    Akyol, Gamze
    Kantarci, Alperen
    Celik, Ali Eren
    Ak, Abdullah Cihan
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [22] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [23] Research on Real-Time Vehicle Detection Algorithm Based on Deep Learning
    Yang, Wei
    Zhang, Ji
    Zhang, Zhongbao
    Wang, Hongyuan
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 126 - 137
  • [24] A Deep Learning-based Approach for Real-time Facemask Detection
    Boulila, Wadii
    Alzahem, Ayyub
    Almoudi, Aseel
    Afifi, Muhanad
    Alturki, Ibrahim
    Driss, Maha
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1478 - 1481
  • [25] Real-time defect detection network for polarizer based on deep learning
    Liu, Ruizhen
    Sun, Zhiyi
    Wang, Anhong
    Yang, Kai
    Wang, Yin
    Sun, Qianlai
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (08) : 1813 - 1823
  • [26] Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry
    Yueqin Li
    Ata Mahjoubfar
    Claire Lifan Chen
    Kayvan Reza Niazi
    Li Pei
    Bahram Jalali
    Scientific Reports, 9
  • [27] Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry
    Li, Yueqin
    Mahjoubfar, Ata
    Chen, Claire Lifan
    Niazi, Kayvan Reza
    Pei, Li
    Jalali, Bahram
    SCIENTIFIC REPORTS, 2019, 9 (1) : 11088
  • [28] A Real-Time Recognition System for User Characteristics Based on Deep Learning
    Nunez Fernandez, Dennis
    PROCEEDINGS OF THE 2018 IEEE 25TH INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON 2018), 2018,
  • [29] Real-Time Vehicle Detection using Deep Learning Scheme on Embedded System
    Shin, Ju-Seok
    Kim, Ung-Tae
    Lee, Deok-Kwon
    Park, Sang-Jun
    Oh, Se-Jin
    Yun, Tae-Jin
    2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, : 272 - 274
  • [30] A real-time forest fire and smoke detection system using deep learning
    Mohammed, Raghad K.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2053 - 2063