A deep learning based system for real-time detection and sorting of earthworm cocoons

被引:1
|
作者
Celik, Ali [1 ]
Uguz, Sinan [2 ]
机构
[1] Isparta Univ Appl Sci, Dept Mech Engn, Isparta, Turkey
[2] Isparta Univ Appl Sci, Dept Comp Engn, Isparta, Turkey
关键词
Object detection; vermicompost; earthworm cocoon; agriculture;
D O I
10.55730/1300-0632.3917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vermicompost, created by earthworms after eating and digesting organic waste, plays an important role as an organic fertiliser in sustainable agriculture. In this study, a deep learning-based smart system was developed to separate earthworm cocoons used in the production of vermicompost from the compost and return it to production. In the first stage of the study, a dataset containing 1000 images of cocoons was created. The cocoons in each image were labeled and training was performed using a deep learning architecture, one-stage and two-stage models. The models were trained over 2000 epochs with a learning rate of 0.01. From the experimental results, faster R-CNN with ResNet50-FPN model detected the earthworm cocoons better compared to other models. The best performance was obtained by this model with an average precision (AP) of 0.89. In the other stage of the study, the cocoons detected by the software were separated from the compost using a specially designed conveyor belt system. In this process, the detected cocoons are separated from the compost using 10 pneumatic valves that spray air at the separation point. The study is the first of its kind that enables earthworm cocoons to be returned to production with the use of a real-time intelligent system. It also contributes to the literature on small object detection using deep learning.
引用
收藏
页码:1980 / 1994
页数:15
相关论文
共 50 条
  • [1] A Deep Learning-Based Real-time Seizure Detection System
    Shawki, N.
    Elseify, T.
    Cap, T.
    Shah, V
    Obeid, I
    Picone, J.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [2] Real-Time Network Intrusion Detection System Based on Deep Learning
    Dong, Yuansheng
    Wang, Rong
    He, Juan
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 1 - 4
  • [3] Real-Time Solid Waste Sorting Machine Based on Deep Learning
    Nedjar, Imane
    M'hamedi, Mohammed
    Bekkaoui, Mokhtaria
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (07) : 581 - 589
  • [4] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664
  • [5] Real-Time Lane Detection Based on Deep Learning
    Baek, Sun-Woo
    Kim, Myeong-Jun
    Suddamalla, Upendra
    Wong, Anthony
    Lee, Bang-Hyon
    Kim, Jung-Ha
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 655 - 664
  • [6] A robust real-time deep learning based automatic polyp detection system
    Pacal, Ishak
    Karaboga, Dervis
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [7] Deep diagnosis: A real-time apple leaf disease detection system based on deep learning
    Khan, Asif Iqbal
    Quadri, S. M. K.
    Banday, Saba
    Shah, Junaid Latief
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198
  • [8] Real-time detection of distracted driving based on deep learning
    Duy Tran
    Ha Manh Do
    Sheng, Weihua
    Bai, He
    Chowdhary, Girish
    IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (10) : 1210 - 1219
  • [9] Deep learning based anomaly detection in real-time video
    Elmetwally A.
    Eldeeb R.
    Elmougy S.
    Multimedia Tools and Applications, 2025, 84 (11) : 9555 - 9571
  • [10] Real-Time, Deep Learning Based Wrong Direction Detection
    Usmankhujaev, Saidasul
    Baydadaev, Shokhrukh
    Woo, Kwon Jang
    APPLIED SCIENCES-BASEL, 2020, 10 (07):