Continued fractions versus Farey fractions

被引:0
|
作者
Bender, A [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1TN,ENGLAND
来源
DR DOBBS JOURNAL | 1996年 / 21卷 / 05期
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:99 / 101
页数:3
相关论文
共 50 条
  • [21] On the Farey Fractions with Denominators in Arithmetic Progression
    Cobeli, C.
    Zaharescu, A.
    JOURNAL OF INTEGER SEQUENCES, 2006, 9 (03)
  • [22] On Farey fractions with small prime factors
    Stakėnas V.
    Lithuanian Mathematical Journal, 2004, 44 (3) : 272 - 284
  • [23] On local frequencies related to farey fractions
    Stakenas V.
    Lithuanian Mathematical Journal, 2000, 40 (1) : 89 - 103
  • [24] The von Mises theorem for farey fractions
    Šiaulys J.
    Lithuanian Mathematical Journal, 1999, 39 (3) : 336 - 347
  • [25] On the intervals of a third between Farey fractions
    Cobeli, Cristian
    Vajaitu, Marian
    Zaharescu, Alexandru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2010, 53 (03): : 239 - 250
  • [26] A note on the pair correlation of Farey fractions
    Boca, Florin P.
    SIsKAKI, M. A. R. I. A.
    ACTA ARITHMETICA, 2022, : 121 - 135
  • [27] A DENSITY THEOREM ON EVEN FAREY FRACTIONS
    Cobeli, Cristian
    Vajaitu, Marian
    Zaharescu, Alexandru
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 55 (06): : 447 - 481
  • [28] APPROXIMATION OF IRRATIONALS WITH FAREY FIBONACCI FRACTIONS
    ALLADI, K
    FIBONACCI QUARTERLY, 1975, 13 (03): : 255 - 259
  • [29] NUMERATORS OF DIFFERENCES OF NONCONSECUTIVE FAREY FRACTIONS
    Haynes, Alan K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (03) : 655 - 666
  • [30] A note on Farey fractions with odd denominators
    Haynes, A
    JOURNAL OF NUMBER THEORY, 2003, 98 (01) : 89 - 104