Fourier uniformity of bounded multiplicative functions in short intervals on average (vol 220, pg 1, 2020)

被引:1
|
作者
Matomaki, Kaisa [1 ]
Radziwill, Maksym [2 ]
Tao, Terence [3 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[2] CALTECH, Dept Math, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[3] Univ Calif Los Angeles, Dept Math, 405 Hilgard Ave, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1007/s00222-019-00931-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let λ denote the Liouville function. We show that as X→ ∞, ∫X2Xsupα|∑x<n≤x+Hλ(n)e(-αn)|dx=o(XH)for all H≥ Xθ with θ> 0 fixed but arbitrarily small. Previously, this was only known for θ> 5 / 8. For smaller values of θ this is the first “non-trivial” case of local Fourier uniformity on average at this scale. We also obtain the analogous statement for (non-pretentious) 1-bounded multiplicative functions. We illustrate the strength of the result by obtaining cancellations in the sum of λ(n) Λ (n+ h) Λ (n+ 2 h) over the ranges h< Xθ and n< X, and where Λ is the von Mangoldt function. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:59 / 59
页数:1
相关论文
共 34 条