Divisor-bounded multiplicative functions in short intervals

被引:7
|
作者
Mangerel, Alexander P. [1 ,2 ]
机构
[1] Univ Montreal, Ctr Rech Math, 2920 Chemin Tour, Montreal, PQ H3T 1J4, Canada
[2] Univ Durham, Dept Math Sci, Upper Mountjoy Campus,Stockton Rd, Durham DH1 3LE, England
关键词
Multiplicative functions; Automorphic forms; Hooley delta function; Pretentious analytic number theory; Matomaki-Radziwill method; MEAN-VALUES; SUMS; THEOREM;
D O I
10.1007/s40687-023-00376-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Matomaki-Radziwill theorem to a large collection of unbounded multiplicative functions that are uniformly bounded, but not necessarily bounded by 1, on the primes. Our result allows us to estimate averages of such a function fin typical intervals of length h(log X)(C), with h = h(X)-> infinity and where c = c(f) >= 0 is determined by the distribution of {|f(p)|}(p) in an explicit way. We give three applications. First, we show that the classical Rankin-Selberg-type asymptotic formula for partial sums of |lambda(f)(n)|(2), where {lambda(f)(n)}(n) is the sequence of normalized Fourier coefficients of a primitive non-CM holomorphic cusp form, persists in typical short intervals of length h log X, if h = h(X)-> infinity. We also generalize this result to sequences {|lambda pi(n)|(2)}(n), where lambda(pi)(n) is the nth coefficient of the standard L-function of an automorphic representation pi with unitary central character for GL(m), m >= 2, provided pi satisfies the generalized Ramanujan conjecture. Second, using recent developments in the theory of automorphic forms we estimate the variance of averages of all positive real moments {|lambda(f)(n)|(alpha)}n over intervals of length h(log X)c alpha, with c alpha > 0 explicit, for any alpha > 0, as h = h(X)-> infinity. Finally, we show that the (non-multiplicative) Hooley delta-function has average value >> log log X in typical short intervals of length (log X)(1/2+eta), where eta > 0 is fixed.
引用
收藏
页数:47
相关论文
共 50 条
  • [1] Divisor-bounded multiplicative functions in short intervals
    Alexander P. Mangerel
    Research in the Mathematical Sciences, 2023, 10
  • [2] Divisor-bounded multiplicative functions in short intervals
    Centre de Recherches Mathématiques, Université de Montréal, Montréal
    QC, Canada
    arXiv, 2021,
  • [3] Higher uniformity of bounded multiplicative functions in short intervals on average
    Matomaeki, Kaisa
    Radziwill, Maksym
    Tao, Terence
    Teraevaeinen, Joni
    Ziegler, Tamar
    ANNALS OF MATHEMATICS, 2023, 197 (02) : 739 - 857
  • [4] Fourier uniformity of bounded multiplicative functions in short intervals on average
    Kaisa Matomäki
    Maksym Radziwiłł
    Terence Tao
    Inventiones mathematicae, 2020, 220 : 1 - 58
  • [5] Multiplicative functions in short intervals
    Matomaki, Kaisa
    Radziwill, Maksym
    ANNALS OF MATHEMATICS, 2016, 183 (03) : 1015 - 1056
  • [6] MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS
    HILDEBRAND, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (03): : 646 - 672
  • [7] MULTIPLICATIVE FUNCTIONS ON SHORT INTERVALS
    ERDOS, P
    INDLEKOFER, KH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 381 : 148 - 160
  • [8] ON THE VARIANCE OF SUMS OF DIVISOR FUNCTIONS IN SHORT INTERVALS
    Lester, Stephen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5015 - 5027
  • [9] ON VALUES OF MULTIPLICATIVE FUNCTIONS IN SHORT INTERVALS
    KATAI, I
    MATHEMATISCHE ANNALEN, 1969, 183 (03) : 181 - &
  • [10] Random Multiplicative Functions in Short Intervals
    Chatterjee, Sourav
    Soundararajan, Kannan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (03) : 479 - 492