Molecular Chemistry for Dark Matter. II. Recombination, Molecule Formation, and Halo Mass Function in Atomic Dark Matter

被引:8
|
作者
Gurian, James [1 ,2 ]
Jeong, Donghui [1 ,2 ,3 ]
Ryan, Michael [1 ,4 ]
Shandera, Sarah [1 ,4 ]
机构
[1] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[3] Korea Inst Adv Study KIAS, Sch Phys, 85 Hoegiro, Seoul 02455, South Korea
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
来源
ASTROPHYSICAL JOURNAL | 2022年 / 934卷 / 02期
关键词
CHARGE-TRANSFER; HYDROGEN; MILKY; CONSTRAINTS; SATELLITES; COLLISIONS; GALAXIES; ETHOS;
D O I
10.3847/1538-4357/ac75e4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Dissipative dark matter predicts rich observable phenomena that can be tested with future large-scale structure surveys. As a specific example, we study atomic dark matter, consisting of a heavy particle and a light particle charged under a dark electromagnetism. In particular, we calculate the cosmological evolution of atomic dark matter focusing on dark recombination and dark molecule formation. We have obtained the relevant interaction rate coefficients by rescaling the rates for normal hydrogen, and evolved the abundances for ionized, atomic, and molecular states using a modified version of Recfast++ (which we have released publicly at (sic)(a)). We also provide an analytical approximation for the final abundances. We then calculate the effects of atomic dark matter on the linear power spectrum, which enter through a dark photon diffusion and dark acoustic oscillations. At formation time, the atomic dark matter model suppresses halo abundances on scales smaller than the diffusion scale, just as warm dark matter models suppress the abundance below the free-streaming scale. The subsequent evolution with radiative cooling, however, will alter the halo mass function further.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Clustering in the phase space of dark matter haloes - II. Stable clustering and dark matter annihilation
    Zavala, Jesus
    Afshordi, Niayesh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 441 (02) : 1329 - 1339
  • [32] Dark matter and large scale structure II.
    Primack, JR
    RECENT DEVELOPMENTS IN PARTICLE PHYSICS AND COSMOLOGY, 2001, 34 : 349 - 365
  • [33] Dark matter annihilation feedback in cosmological simulations - II. The influence on gas and halo structure
    Iwanus, N.
    Elahi, P. J.
    List, F.
    Lewis, G. F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (01) : 1420 - 1434
  • [34] The formation of cold dark matter haloes - II. Collapse time and tides
    Borzyszkowski, Mikolaj
    Ludlow, Aaron D.
    Porciani, Cristiano
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 445 (04) : 4124 - 4136
  • [35] Imprints of dark energy on cosmic structure formation - II. Non-universality of the halo mass function
    Courtin, J.
    Rasera, Y.
    Alimi, J. -M.
    Corasaniti, P. -S.
    Boucher, V.
    Fuzfa, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 410 (03) : 1911 - 1931
  • [36] Stellar-to-Halo Mass Ratio and Dark Matter Profiles
    Del Popolo, A.
    ASTRONOMY REPORTS, 2021, 65 (07) : 529 - 542
  • [37] Mass of H2 dark matter in the galactic halo
    Shchekinov, YA
    Dettmar, RJ
    Kalberla, PMW
    MOLECULAR HYDROGEN IN SPACE, 2000, : 57 - 60
  • [38] Stellar-to-Halo Mass Ratio and Dark Matter Profiles
    A. Del Popolo
    Astronomy Reports, 2021, 65 : 529 - 542
  • [39] A CORRELATION BETWEEN SPIN PARAMETER AND DARK MATTER HALO MASS
    Knebe, A.
    Power, C.
    GRAND CHALLENGES IN COMPUTATIONAL ASTROPHYSICS, 2011, 44 : 53 - +
  • [40] Partition function for a mass dimension one fermionic field and the dark matter halo of galaxies
    Pereira, S. H.
    Costa, Richard S.
    MODERN PHYSICS LETTERS A, 2019, 34 (16)