X-wave solutions of complex Ginzburg-Landau equations

被引:8
|
作者
Zhou, CT
Yu, MY
He, XT
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.026209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A solution in the form of X-wave patterns of the complex Ginzburg-Landau equation with a harmonic background inhomogeneity is obtained. The pattern can be attributed to the effects of the harmonic potential and the boundary configuration and size. By varying the harmonic of the background potential, the competition among three types of wave patterns: spiral, X, and target, is investigated by following the evolution of the Fourier modes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Exact Solutions for Domain Walls in Coupled Complex Ginzburg-Landau Equations
    Yee, Tat Leung
    Tsang, Alan Cheng Hou
    Malomed, Boris
    Chow, Kwok Wing
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (06)
  • [22] Existence and stability of standing hole solutions to complex Ginzburg-Landau equations
    Kapitula, T
    Rubin, J
    NONLINEARITY, 2000, 13 (01) : 77 - 112
  • [23] Bounded solutions of nonlocal complex Ginzburg-Landau equations for a subcritical bifurcation
    Volpert, V. A.
    Nepomnyashchy, A. A.
    Stanton, L. G.
    Golovin, A. A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02): : 265 - 283
  • [24] Existence and decay estimates of solutions to complex Ginzburg-Landau type equations
    Shimotsuma, Daisuke
    Yokota, Tomomi
    Yoshii, Kentarou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) : 3119 - 3149
  • [25] Stability of bifurcating solutions for the Ginzburg-Landau equations
    Bolley, C
    Helffer, B
    REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (05) : 579 - 626
  • [26] On Abrikosov Lattice Solutions of the Ginzburg-Landau Equations
    Ilias Chenn
    Panayotis Smyrnelis
    Israel Michael Sigal
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [27] On Abrikosov Lattice Solutions of the Ginzburg-Landau Equations
    Chenn, Ilias
    Smyrnelis, Panayotis
    Sigal, Israel Michael
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (01)
  • [28] Abrikosov lattice solutions of the Ginzburg-Landau equations
    Tzaneteas, T.
    Sigal, I. M.
    SPECTRAL THEORY AND GEOMETRIC ANALYSIS, 2011, 535 : 195 - 213
  • [29] CLASSICAL SOLUTIONS OF GENERAL GINZBURG-LANDAU EQUATIONS
    Chen, Shuhong
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 717 - 732
  • [30] Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model
    Osmon, M. S.
    Lu, D.
    Khater, M. M. A.
    Attia, R. A. M.
    OPTIK, 2019, 192