FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality

被引:47
|
作者
Deng, Nianchen [1 ]
He, Zhenyi [2 ]
Ye, Jiannan [1 ]
Duinkharjav, Budmonde [3 ]
Chakravarthula, Praneeth [4 ]
Yang, Xubo [1 ,5 ]
Sun, Qi [6 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Software, Shanghai, Peoples R China
[2] NYU, Dept Comp Sci, New York, NY 10003 USA
[3] NYU, Immers Comp Lab, New York, NY 10003 USA
[4] Univ N Carolina, Comp Sci, Chapel Hill, NC USA
[5] Peng Cheng Lab, Shenzhen, Peoples R China
[6] NYU, Tandon Sch Engn, New York, NY 10003 USA
关键词
Virtual Reality; Gaze-Contingent Graphics; Neural Representation; Foveated Rendering;
D O I
10.1109/TVCG.2022.3203102
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Virtual Reality (VR) is becoming ubiquitous with the rise of consumer displays and commercial VR platforms. Such displays require low latency and high quality rendering of synthetic imagery with reduced compute overheads. Recent advances in neural rendering showed promise of unlocking new possibilities in 3D computer graphics via image-based representations of virtual or physical environments. Specifically, the neural radiance fields (NeRF) demonstrated that photo-realistic quality and continuous view changes of 3D scenes can be achieved without loss of view-dependent effects. While NeRF can significantly benefit rendering for VR applications, it faces unique challenges posed by high field-of-view, high resolution, and stereoscopic/egocentric viewing, typically causing low quality and high latency of the rendered images. In VR, this not only harms the interaction experience but may also cause sickness. To tackle these problems toward six-degrees-of-freedom, egocentric, and stereo NeRF in VR, we present the first gaze-contingent 3D neural representation and view synthesis method. We incorporate the human psychophysics of visual- and stereo-acuity into an egocentric neural representation of 3D scenery. We then jointly optimize the latency/performance and visual quality while mutually bridging human perception and neural scene synthesis to achieve perceptually high-quality immersive interaction. We conducted both objective analysis and subjective studies to evaluate the effectiveness of our approach. We find that our method significantly reduces latency (up to 99% time reduction compared with NeRF) without loss of high-fidelity rendering (perceptually identical to full-resolution ground truth). The presented approach may serve as the first step toward future VR/AR systems that capture, teleport, and visualize remote environments in real-time.
引用
收藏
页码:3854 / 3864
页数:11
相关论文
共 50 条
  • [21] CaSE-NeRF: Camera Settings Editing of Neural Radiance Fields
    Sun, Ciliang
    Li, Yuqi
    Li, Jiabao
    Wang, Chong
    Dai, Xinmiao
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 95 - 107
  • [22] NeRF-DA: Neural Radiance Fields Deblurring With Active Learning
    Hong, Sejun
    Kim, Eunwoo
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 261 - 265
  • [23] BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields
    Wang, Peng
    Zhao, Lingzhe
    Ma, Ruijie
    Liu, Peidong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4170 - 4179
  • [24] Point-NeRF: Point-based Neural Radiance Fields
    Xu, Qiangeng
    Xu, Zexiang
    Philip, Julien
    Bi, Sai
    Shu, Zhixin
    Sunkavalli, Kalyan
    Neumann, Ulrich
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5428 - 5438
  • [25] Interactive Data Fusion of Neural Radiance Fields for Industrial Facility Inspection in Virtual Reality
    Li, Ke
    Schmidt, Susanne
    Rolff, Tim
    Bacher, Reinhard
    Leemans, Wim
    Steinicke, Frank
    2024 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS, VRW 2024, 2024, : 817 - 818
  • [26] Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields
    Lin, Youtian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3504 - 3512
  • [27] NeRF-SR: High Quality Neural Radiance Fields using Supersampling
    Wang, Chen
    Wu, Xian
    Guo, Yuan-Chen
    Zhang, Song-Hai
    Tai, Yu-Wing
    Hu, Shi-Min
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6445 - 6454
  • [28] NeRF-Art: Text-Driven Neural Radiance Fields Stylization
    Wang, Can
    Jiang, Ruixiang
    Chai, Menglei
    He, Mingming
    Chen, Dongdong
    Liao, Jing
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (08) : 4983 - 4996
  • [29] Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields
    Isaac-Medina, Brian K. S.
    Willcocks, Chris G.
    Breckon, Toby P.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 66 - 75
  • [30] RS-NeRF: Neural Radiance Fields from Rolling Shutter Images
    Niu, Muyao
    Chen, Tong
    Zhan, Yifan
    Li, Zhuoxiao
    Ji, Xiang
    Zheng, Yinqiang
    COMPUTER VISION-ECCV 2024, PT XLVI, 2025, 15104 : 163 - 180