One-step sparse estimates in nonconcave penalized likelihood models

被引:858
|
作者
Zou, Hui [1 ]
Li, Runze [2 ,3 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Penn State Univ, Methodol Ctr, University Pk, PA 16802 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 04期
关键词
AIC; BIC; LASSO; one-step estimator; oracle properties; SCAD;
D O I
10.1214/009053607000000802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fan and Li propose a family of variable selection methods via penalized likelihood using concave penalty functions. The nonconcave penalized likelihood estimators enjoy the oracle properties, but maximizing the penalized likelihood function is computationally challenging, because the objective function is nondifferentiable and nonconcave. In this article, we propose a new unified algorithm based on the local linear approximation (LLA) for maximizing the penalized likelihood for a broad class of concave penalty functions. Convergence and other theoretical properties of the LLA algorithm are established. A distinguished feature of the LLA algorithm is that at each LLA step, the LLA estimator can naturally adopt a sparse representation. Thus, we suggest using the one-step LLA estimator from the LLA algorithm as the final estimates. Statistically, we show that if the regularization parameter is appropriately chosen, the one-step LLA estimates enjoy the oracle properties with good initial estimators. Computationally, the one-step LLA estimation methods dramatically reduce the computational cost in maximizing the nonconcave penalized likelihood. We conduct some Monte Carlo simulation to assess the finite sample performance of the one-step sparse estimation methods. The results are very encouraging.
引用
收藏
页码:1509 / 1533
页数:25
相关论文
共 50 条
  • [31] One-step estimation for varying coefficient models
    TANG Qingguo & WANG Jinde Department of Mathematics
    Institute of Sciences
    Science China Mathematics, 2005, (02) : 198 - 213
  • [32] Two Formalisms of Stochastization of One-Step Models
    D. S. Kulyabov
    A. V. Korolkova
    L. A. Sevastianov
    Physics of Atomic Nuclei, 2018, 81 : 916 - 922
  • [33] A BAYESIAN-ANALYSIS FOR A CLASS OF PENALIZED LIKELIHOOD ESTIMATES
    BARRY, D
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (04) : 1057 - 1071
  • [34] One-step M-estimates of scatter and the independence property
    Virta, J.
    STATISTICS & PROBABILITY LETTERS, 2016, 110 : 133 - 136
  • [35] Sparse factor regression via penalized maximum likelihood estimation
    Hirose, Kei
    Imada, Miyuki
    STATISTICAL PAPERS, 2018, 59 (02) : 633 - 662
  • [36] Sparse factor regression via penalized maximum likelihood estimation
    Kei Hirose
    Miyuki Imada
    Statistical Papers, 2018, 59 : 633 - 662
  • [37] Behaviour of combustion waves in one-step and two-step models
    Sharples, J. J.
    Gubernov, V. V.
    Sidhu, H. S.
    Towers, I. N.
    Kolobov, A. V.
    Polezhaev, A. A.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 4453 - 4459
  • [38] A penalized likelihood approach for mixture cure models
    Corbiere, Fabien
    Commenges, Daniel
    Taylor, Jeremy M. G.
    Joly, Pierre
    STATISTICS IN MEDICINE, 2009, 28 (03) : 510 - 524
  • [39] Nonconcave penalized inverse regression in single-index models with high dimensional predictors
    Zhu, Li-Ping
    Zhu, Li-Xing
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (05) : 862 - 875
  • [40] Penalized empirical likelihood estimation of semiparametric models
    Otsu, Taisuke
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (10) : 1923 - 1954