One-step sparse estimates in nonconcave penalized likelihood models

被引:858
|
作者
Zou, Hui [1 ]
Li, Runze [2 ,3 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Penn State Univ, Methodol Ctr, University Pk, PA 16802 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 04期
关键词
AIC; BIC; LASSO; one-step estimator; oracle properties; SCAD;
D O I
10.1214/009053607000000802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fan and Li propose a family of variable selection methods via penalized likelihood using concave penalty functions. The nonconcave penalized likelihood estimators enjoy the oracle properties, but maximizing the penalized likelihood function is computationally challenging, because the objective function is nondifferentiable and nonconcave. In this article, we propose a new unified algorithm based on the local linear approximation (LLA) for maximizing the penalized likelihood for a broad class of concave penalty functions. Convergence and other theoretical properties of the LLA algorithm are established. A distinguished feature of the LLA algorithm is that at each LLA step, the LLA estimator can naturally adopt a sparse representation. Thus, we suggest using the one-step LLA estimator from the LLA algorithm as the final estimates. Statistically, we show that if the regularization parameter is appropriately chosen, the one-step LLA estimates enjoy the oracle properties with good initial estimators. Computationally, the one-step LLA estimation methods dramatically reduce the computational cost in maximizing the nonconcave penalized likelihood. We conduct some Monte Carlo simulation to assess the finite sample performance of the one-step sparse estimation methods. The results are very encouraging.
引用
收藏
页码:1509 / 1533
页数:25
相关论文
共 50 条
  • [1] Discussion: One-step sparse estimates in nonconcave penalized likelihood models
    Zhang, Cun-Hui
    ANNALS OF STATISTICS, 2008, 36 (04): : 1553 - 1560
  • [2] Discussion: One-step sparse estimates in nonconcave penalized likelihood models: Who cares if it is a white cat or a black cat?
    Meng, Xiao-Li
    ANNALS OF STATISTICS, 2008, 36 (04): : 1542 - 1552
  • [3] NONCONCAVE PENALIZED COMPOSITE CONDITIONAL LIKELIHOOD ESTIMATION OF SPARSE ISING MODELS
    Xue, Lingzhou
    Zou, Hui
    Cai, Tianxi
    ANNALS OF STATISTICS, 2012, 40 (03): : 1403 - 1429
  • [4] Sparse estimation via nonconcave penalized likelihood in factor analysis model
    Kei Hirose
    Michio Yamamoto
    Statistics and Computing, 2015, 25 : 863 - 875
  • [5] Sparse estimation via nonconcave penalized likelihood in factor analysis model
    Hirose, Kei
    Yamamoto, Michio
    STATISTICS AND COMPUTING, 2015, 25 (05) : 863 - 875
  • [6] Nonconcave penalized likelihood with a diverging number of parameters
    Fan, JQ
    Peng, H
    ANNALS OF STATISTICS, 2004, 32 (03): : 928 - 961
  • [7] Nonconcave Penalized Likelihood With NP-Dimensionality
    Fan, Jianqing
    Lv, Jinchi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5467 - 5484
  • [8] Iterative Conditional Maximization Algorithm for Nonconcave Penalized Likelihood
    Zhang, Yiyun
    Li, Runze
    NONPARAMETRIC STATISTICS AND MIXTURE MODELS: A FESTSCHRIFT IN HONOR OF THOMAS P HETTMANSPERGER, 2011, : 336 - 351
  • [9] Nonconcave penalized estimation in sparse vector autoregression model
    Zhu, Xuening
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1413 - 1448
  • [10] On the asymptotic behavior of one-step estimates in heteroscedastic regression models
    Bianco, A
    Boente, G
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) : 33 - 47