A computational framework for guiding the MOCVD-growth of wafer-scale 2D materials

被引:23
|
作者
Momeni, Kasra [1 ]
Ji, Yanzhou [2 ]
Nayir, Nadire [3 ,4 ,5 ]
Sakib, Nurruzaman [1 ]
Zhu, Haoyue [4 ]
Paul, Shiddartha [1 ]
Choudhury, Tanushree H. [4 ]
Neshani, Sara [6 ]
van Duin, Adri C. T. [3 ,4 ]
Redwing, Joan M. [2 ,4 ]
Chen, Long-Qing [2 ]
机构
[1] Univ Alabama, Dept Mech Engn, Tuscaloosa, AL 35487 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[4] Penn State Univ, Mat Res Inst, 2 Dimens Crystal Consortium 2DCC Mat Innovat Plat, University Pk, PA 16802 USA
[5] Karamanoglu Mehmetbey Univ, Dept Phys, TR-70000 Karaman, Turkey
[6] Univ Alabama, Dept Elect Engn, Tuscaloosa, AL 35487 USA
关键词
MULTILAYER GRAPHENE; LAYER MOS2; WSE2; DIFFUSION; SUBSTRATE; CVD; SAPPHIRE; EPITAXY; FILMS; EDGE;
D O I
10.1038/s41524-022-00936-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reproducible wafer-scale growth of two-dimensional (2D) materials using the Chemical Vapor Deposition (CVD) process with precise control over their properties is challenging due to a lack of understanding of the growth mechanisms spanning over several length scales and sensitivity of the synthesis to subtle changes in growth conditions. A multiscale computational framework coupling Computational Fluid Dynamics (CFD), Phase-Field (PF), and reactive Molecular Dynamics (MD) was developed - called the CPM model - and experimentally verified. Correlation between theoretical predictions and thorough experimental measurements for a Metal-Organic CVD (MOCVD)-grown WSe2 model material revealed the full power of this computational approach. Large-area uniform 2D materials are synthesized via MOCVD, guided by computational analyses. The developed computational framework provides the foundation for guiding the synthesis of wafer-scale 2D materials with precise control over the coverage, morphology, and properties, a critical capability for fabricating electronic, optoelectronic, and quantum computing devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Detailed study on MOCVD of wafer-scale MoS2 monolayers: From nucleation to coalescence
    Tang, Songyao
    Grundmann, Annika
    Fiadziushkin, Hleb
    Ghiami, Amir
    Heuken, Michael
    Vescan, Andrei
    Kalisch, Holger
    MRS ADVANCES, 2022, 7 (30) : 751 - 756
  • [42] Wafer-Scale Synthesis of Highly Oriented 2D Topological Semimetal PtTe2 via Tellurization
    Choi, Minhyuk
    Oh, Saeyoung
    Hahn, Sungsoo
    Ji, Yubin
    Jo, Min-kyung
    Kim, Jeongtae
    Ju, Tae-Seong
    Kim, Gyeongbo
    Gyeon, Minseung
    Lee, Yuhwa
    Do, Jeonghyeon
    Choi, Seungwook
    Kim, Ansoon
    Yang, Seungmo
    Hwang, Changyong
    Kim, Kab-Jin
    Cho, Doohee
    Kim, Changyoung
    Kang, Kibum
    Jeong, Hu Young
    Song, Seungwoo
    ACS NANO, 2024, 18 (23) : 15154 - 15166
  • [43] Rapid-throughput solution-based production of wafer-scale 2D MoS2
    Robertson, John
    Blomdahl, Daniel
    Islam, Kazi
    Ismael, Timothy
    Woody, Maxwell
    Failla, Jacqueline
    Johnson, Michael
    Zhang, Xiaodong
    Escarra, Matthew
    APPLIED PHYSICS LETTERS, 2019, 114 (16)
  • [44] Wafer-Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection
    Jeon, Hye Yoon
    Song, Da Som
    Shin, Rosa
    Kwon, Yeong Min
    Jo, Hyeong-ku
    Lee, Do Hyung
    Lee, Eunji
    Jang, Moonjeong
    So, Hee-Soo
    Kang, Saewon
    Yim, Soonmin
    Myung, Sung
    Lee, Sun Sook
    Yoon, Dae Ho
    Kim, Chang Gyoun
    Lim, Jongsun
    Song, Wooseok
    SMALL, 2024, 20 (33)
  • [45] Wafer-Scale Synthesis of 2D Dirac Heterostructures for Self-Driven, Fast, Broadband Photodetectors
    Yu, Wenzhi
    Dong, Zhuo
    Mu, Haoran
    Ren, Guanghui
    He, Xiaoyue
    Li, Xiu
    Lin, Shenghuang
    Zhang, Kai
    Bao, Qiaoliang
    Mokkapati, Sudha
    ACS NANO, 2022, 16 (08) : 12922 - 12929
  • [46] Wafer-Scale Transfer of MXene Films with Enhanced Device Performance via 2D Liquid Intercalation
    Xu, Xiangming
    Thomas, Simil
    Guo, Tianchao
    Luo, Linqu
    Khan, Yusuf
    Yuan, Yue
    Elhagrasy, Youssef A.
    Lanza, Mario
    Anthopoulos, Thomas D.
    Bakr, Osman M.
    Mohammed, Omar F.
    Alshareef, Husam N.
    ADVANCED MATERIALS, 2024, 36 (51)
  • [47] Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity
    Chiappe, Daniele
    Ludwig, Jonathan
    Leonhardt, Alessandra
    El Kazzi, Salim
    Mehta, Ankit Nalin
    Nuytten, Thomas
    Celano, Umberto
    Sutar, Surajit
    Pourtois, Geoffrey
    Caymax, Matty
    Paredis, Kristof
    Vandervorst, Wilfried
    Lin, Dennis
    De Gendt, Stefan
    Barla, Kathy
    Huyghebaert, Cedric
    Asselberghs, Inge
    Radu, Iuliana
    NANOTECHNOLOGY, 2018, 29 (42)
  • [48] Multiscale computational understanding and growth of 2D materials: a review
    Momeni, Kasra
    Ji, Yanzhou
    Wang, Yuanxi
    Paul, Shiddartha
    Neshani, Sara
    Yilmaz, Dundar E.
    Shin, Yun Kyung
    Zhang, Difan
    Jiang, Jin-Wu
    Park, Harold S.
    Sinnott, Susan
    van Duin, Adri
    Crespi, Vincent
    Chen, Long-Qing
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [49] Multiscale computational understanding and growth of 2D materials: a review
    Kasra Momeni
    Yanzhou Ji
    Yuanxi Wang
    Shiddartha Paul
    Sara Neshani
    Dundar E. Yilmaz
    Yun Kyung Shin
    Difan Zhang
    Jin-Wu Jiang
    Harold S. Park
    Susan Sinnott
    Adri van Duin
    Vincent Crespi
    Long-Qing Chen
    npj Computational Materials, 6
  • [50] Low Carbon Residue Growth of Wafer-Scale MoS2
    Liu, Yihe
    Jiang, He
    Gao, Li
    Hong, Mengyu
    Yu, Huihui
    Chen, Kuanglei
    He, Xiaoyu
    Zhang, Xiankun
    Zhang, Zheng
    Zhang, Yue
    SMALL, 2025,