Design and Fabrication of Segmented GeTe/(Bi,Sb)2Te3 Thermoelectric Module with Enhanced Conversion Efficiency

被引:14
|
作者
Pei, Jun [1 ,2 ]
Shi, Jian-Lei [2 ]
Li, Hezhang [3 ]
Jiang, Yilin [1 ]
Dong, Jinfeng [1 ]
Zhuang, Hua-Lu [1 ]
Cai, Bowen [1 ]
Su, Bin [1 ]
Yu, Jincheng [1 ]
Zhou, Wei [2 ]
Zhang, Bo-Ping [2 ]
Li, Jing-Feng [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
[3] Natl Inst Mat Sci NIMS, Tsukuba 3050047, Japan
基金
国家重点研发计划;
关键词
contact resistance; GeTe; metallization layers; segmented leg; thermoelectric materials; POWER-GENERATION; PERFORMANCE; (BI; SB)(2)TE-3; OPTIMIZATION; STABILITY;
D O I
10.1002/adfm.202214771
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
GeTe and (Bi,Sb)(2)Te-3 are two representative thermoelectric (TE) materials showing maximum performance at middle and low temperature, respectively. In order to achieve higher performance over the whole temperature range, their segmented one-leg TE modules are designed and fabricated by one-step spark plasma sintering (SPS). To search for contact and connect layers, the diffusion behavior of Fe, Ni, Cu, and Ti metal layers in GeTe is studied systematically. The results show that Ti with a similar linear expansivity (10.80 x 10(-6) K-1) to GeTe, has low contact resistance (3 mu omega cm(2)) and thin diffusion layer (0.4 mu m), and thus is an effective metallization layer for GeTe. The geometric structure of the GeTe/(Bi,Sb)(2)Te-3 segmented one-leg TE module and the ratio of GeTe to (Bi,Sb)(2)Te-3 are determined by finite element simulation method. When the GeTe height ratio is 0.66, its theoretical maximum conversion efficiency (eta(max)) can reach 15.9% without considering the thermal radiation and thermal/electrical contact resistance. The fabricated GeTe/(Bi,Sb)(2)Te-3 segmented one-leg TE module showed a eta(max) up to 9.5% with a power density approximate to 7.45 mW mm(-2), which are relatively high but lower than theoretical predictions, indicating that developing segmented TE modules is an effective approach to enhance TE conversion efficiency.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Effects of interfacial properties on conversion efficiency of Bi2Te3-based segmented thermoelectric devices
    Yan, Zipeng
    Song, Kun
    Xu, Liang
    Tan, Xiaojian
    Hu, Haoyang
    Sun, Peng
    Liu, Guoqiang
    Pan, Chunrong
    Jiang, Jun
    APPLIED PHYSICS LETTERS, 2021, 119 (23)
  • [22] Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation
    Xu, Z. J.
    Hu, L. P.
    Ying, P. J.
    Zhao, X. B.
    Zhu, T. J.
    ACTA MATERIALIA, 2015, 84 : 385 - 392
  • [23] High-Efficiency Thermoelectric Power Generation Enabled by Homogeneous Incorporation of MXene in (Bi,Sb)2Te3 Matrix
    Lu, Xiaofang
    Zhang, Qihao
    Liao, Jincheng
    Chen, Hongyi
    Fan, Yuchi
    Xing, Juanjuan
    Gu, Shijia
    Huang, Jilong
    Ma, Jiaxin
    Wang, Jiancheng
    Wang, Lianjun
    Jiang, Wan
    ADVANCED ENERGY MATERIALS, 2020, 10 (02)
  • [24] (Bi,Sb)2Te3/SiC nanocomposites with enhanced thermoelectric performance: Effect of SiC nanoparticle size and compositional modulation
    Cai, Bowen
    Pei, Jun
    Dong, Jinfeng
    Zhuang, Hua-Lu
    Gu, Jinyu
    Cao, Qian
    Hu, Haihua
    Lin, Zihao
    Li, Jing-Feng
    SCIENCE CHINA-MATERIALS, 2021, 64 (10) : 2551 - 2562
  • [25] Thermoelectric characteristics of the electrodeposited (Bi,Sb)2Te3 films with variation of the electrodeposition current density
    Yoon, Tae-Jin
    Park, Yong-Ho
    Oh, Tae-Sung
    ECO-MATERIALS PROCESSING AND DESIGN VIII, 2007, 544-545 : 917 - +
  • [26] Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2Te3 Nanocomposites
    Xie, Wenjie
    He, Jian
    Kang, Hye Jung
    Tang, Xinfeng
    Zhu, Song
    Laver, Mark
    Wang, Shanyu
    Copley, John R. D.
    Brown, Craig M.
    Zhang, Qingjie
    Tritt, Terry M.
    NANO LETTERS, 2010, 10 (09) : 3283 - 3289
  • [27] Microstructure and contact resistivity of (Bi, Sb)2Te3/Sb interface
    Li, Fei
    Huang, Xiangyang
    Jiang, Wan
    Chen, Lidong
    9TH EUROPEAN CONFERENCE ON THERMOELECTRICS (ECT2011), 2012, 1449 : 458 - 462
  • [28] Improved mechanical properties of thermoelectric (Bi0.2Sb0.8)2Te3 by nanostructuring
    Lavrentev, M. G.
    Osvenskii, V. B.
    Parkhomenko, Yu. N.
    Pivovarov, G. I.
    Sorokin, A. I.
    Bulat, L. P.
    Kim, H. -S.
    Witting, I. T.
    Snyder, G. J.
    Bublik, V. T.
    Tabachkova, N. Yu.
    APL MATERIALS, 2016, 4 (10):
  • [29] Enhanced thermoelectric performance of (Sb0.75Bi0.25)2Te3 compound from first-principles calculations
    Lv, H. Y.
    Liu, H. J.
    Pan, L.
    Wen, Y. W.
    Tan, X. J.
    Shi, J.
    Tang, X. F.
    APPLIED PHYSICS LETTERS, 2010, 96 (14)
  • [30] Thermoelectric performance of p-type (Bi,Sb)2Te3 incorporating amorphous Sb2S3 nanospheres
    Bao, Deyu
    Sun, Qiang
    Huang, Linsen
    Chen, Jie
    Tang, Jun
    Zhou, Dali
    Hong, Min
    Yang, Lei
    Chen, Zhi-Gang
    CHEMICAL ENGINEERING JOURNAL, 2022, 430