Convolutional Neural Network Approach for Iris Segmentation

被引:0
|
作者
Abhinand, P. [1 ]
Sheela, S. V. [2 ]
Radhika, K. R. [2 ]
机构
[1] Bosch Grp, Bangalore, Karnataka, India
[2] BMS Coll Engn, Bangalore, Karnataka, India
关键词
Semantic segmentation; Image labeling; Ground truth masks; Jaccard index; IMAGE SEGMENTATION; RECOGNITION; CNN;
D O I
10.1007/978-3-031-27609-5_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Iris segmentation is the initial step for recognition or authentication tasks. In the proposedwork, segmentation of iris region is performed using semantic network. A label or category is associated with every pixel in an image. Semantic segmentation is precise since it clearly detects irregular shaped representations. SegNet is the convolutional neural network proposed for semantic image localization. Pixels with similar attributes are grouped together. Labeled images represent categorical identifiers stored as ground truth masks. Encoder decoder blocks followed by pixel-wise classifier constitute the convolutional network. Each block comprises of convolution, batch normalization and rectified linear unit. Indices determine the mapping of encoder and decoder blocks. Encoder depth regulates the number of times image is upsampled or downsampled. Activations of network relate to the features. In the initial layers, color and edges are learnt. Channels in deeper layers learn the complex features. Learnable parameters are used in convolution. The approach determines iris boundaries without the step of preprocessing. Iris and background are the two labels considered. Eye images and ground truth masks are used for training. Testing samples are evaluated using Jaccard index. The experiment has been conducted on UBIRIS and CASIA datasets for segmentation results, obtaining an F-measure value of 0.987 and 0.962, respectively.
引用
收藏
页码:354 / 368
页数:15
相关论文
共 50 条
  • [31] Skin Lesion Segmentation with Improved Convolutional Neural Network
    Ozturk, Saban
    Ozkaya, Umut
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 958 - 970
  • [32] Convolutional neural network for automated mass segmentation in mammography
    Abdelhafiz, Dina
    Bi, Jinbo
    Ammar, Reda
    Yang, Clifford
    Nabavi, Sheida
    BMC BIOINFORMATICS, 2020, 21 (Suppl 1)
  • [33] Analysis of Convolutional Neural Network for Fundus Image Segmentation
    Shirokanev, A. S.
    Ilyasova, N. Yu
    Demin, N. S.
    2019 4TH INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2019), 2020, 1438
  • [34] Application of a Convolutional Neural Network to the Segmentation of Lungs in Mice
    Criscuolo, E.
    Sali, R.
    Graves, E.
    Soto, L.
    MEDICAL PHYSICS, 2022, 49 (06) : E750 - E750
  • [35] An Integration Convolutional Neural Network for Nuclei Instance Segmentation
    Qu, Aiping
    Cheng, Zhiming
    He, Xiaofeng
    Li, Yue
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1104 - 1109
  • [36] Brain Region Segmentation using Convolutional Neural Network
    Selvathi, D.
    Vanmathi, T.
    2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2018, : 661 - 666
  • [37] Spleen Segmentation on CT Using Convolutional Neural Network
    Tulum, Gokalp
    Osman, Onur
    Dandin, Ozgur
    Yilmaz, Vural Taner
    Kisaoglu, Abdullah
    Demiryilmaz, Ismail
    Yaprak, Muhittin
    Aydinli, Bulent
    Ergin, Tuncer
    Cuce, Ferhat
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 259 - 262
  • [38] Foreground segmentation using multiscale convolutional neural network
    Fu, Hui-Ni
    Wang, Ben-Zhang
    Liu, Heng-Zhu
    ELECTRONICS LETTERS, 2020, 56 (12) : 597 - 598
  • [39] Automatic Segmentation of Sinkholes Using a Convolutional Neural Network
    Rafique, Muhammad Usman
    Zhu, Junfeng
    Jacobs, Nathan
    EARTH AND SPACE SCIENCE, 2022, 9 (02)
  • [40] Region Convolutional Neural Network for Brain Tumor Segmentation
    Pitchai, R.
    Praveena, K.
    Murugeswari, P.
    Kumar, Ashok
    Mariam Bee, M. K.
    Alyami, Nouf M.
    Sundaram, R. S.
    Srinivas, B.
    Vadda, Lavanya
    Prince, T.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022