Local smoothing and Hardy spaces for Fourier integral operators on manifolds

被引:0
|
作者
Liu, Naijia [1 ]
Rozendaal, Jan [2 ]
Song, Liang [1 ]
Yan, Lixin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Polish Acad Sci, Inst Math, Ul Śniadeckich 8, PL-00656 Warsaw, Poland
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Local smoothing; Wave equation; Hardy space for Fourier integral operators; Riemannian manifold; OSCILLATORY INTEGRALS; MAXIMAL FUNCTIONS; MULTIPLIERS;
D O I
10.1016/j.jfa.2023.110221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Hardy spaces for Fourier integral operators on Riemannian manifolds with bounded geometry. We then use these spaces to obtain improved local smoothing estimates for Fourier integral operators satisfying the cinematic curvature condition, and for wave equations on compact manifolds. The estimates are essentially sharp, for all 2 < p < infinity and on each compact manifold. We also apply our local smoothing estimates to nonlinear wave equations with initial data outside of L-2-based Sobolev spaces.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:72
相关论文
共 50 条
  • [21] Pseudodifferential Operators on Local Hardy Spaces
    Hounie, J.
    dos Santos Kapp, Rafael Augusto
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (02) : 153 - 178
  • [22] Pseudodifferential Operators on Local Hardy Spaces
    J. Hounie
    Rafael Augusto dos Santos Kapp
    Journal of Fourier Analysis and Applications, 2009, 15 : 153 - 178
  • [23] On Hardy spaces of local and nonlocal operators
    Bogdan, Krzysztof
    Dyda, Bartlomiej
    Luks, Tomasz
    HIROSHIMA MATHEMATICAL JOURNAL, 2014, 44 (02) : 193 - 215
  • [24] Fractional integral operators on anisotropic hardy spaces
    Ding, Yong
    Lan, Senhua
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (03) : 329 - 356
  • [25] Fractional Integral Operators on Anisotropic Hardy Spaces
    Yong Ding
    Senhua Lan
    Integral Equations and Operator Theory, 2008, 60 : 329 - 356
  • [26] Local Hardy spaces and summability of Fourier transforms
    Weisz, Ferenc
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 275 - 285
  • [27] Fractional Type Integral Operators on Variable Hardy Spaces
    Rocha, P.
    Urciuolo, M.
    ACTA MATHEMATICA HUNGARICA, 2014, 143 (02) : 502 - 514
  • [28] Fractional integral operators on Orlicz slice Hardy spaces
    Kwok-Pun Ho
    Fractional Calculus and Applied Analysis, 2022, 25 : 1294 - 1305
  • [29] Integral operators with variable kernels on weak Hardy spaces
    Ding, Y
    Lu, SZ
    Shao, SL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) : 127 - 135
  • [30] Fractional integral operators on Orlicz slice Hardy spaces
    Ho, Kwok-Pun
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1294 - 1305