Local smoothing and Hardy spaces for Fourier integral operators on manifolds

被引:0
|
作者
Liu, Naijia [1 ]
Rozendaal, Jan [2 ]
Song, Liang [1 ]
Yan, Lixin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Polish Acad Sci, Inst Math, Ul Śniadeckich 8, PL-00656 Warsaw, Poland
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Local smoothing; Wave equation; Hardy space for Fourier integral operators; Riemannian manifold; OSCILLATORY INTEGRALS; MAXIMAL FUNCTIONS; MULTIPLIERS;
D O I
10.1016/j.jfa.2023.110221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Hardy spaces for Fourier integral operators on Riemannian manifolds with bounded geometry. We then use these spaces to obtain improved local smoothing estimates for Fourier integral operators satisfying the cinematic curvature condition, and for wave equations on compact manifolds. The estimates are essentially sharp, for all 2 < p < infinity and on each compact manifold. We also apply our local smoothing estimates to nonlinear wave equations with initial data outside of L-2-based Sobolev spaces.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:72
相关论文
共 50 条