Study on Thermal Runaway Risk Prevention of Lithium-Ion Battery with Composite Phase Change Materials

被引:3
|
作者
Zhang, Kai [1 ]
Wang, Lu [1 ]
Xu, Chenbo [1 ]
Wu, Hejun [1 ]
Huang, Dongmei [2 ]
Jin, Kan [2 ]
Xu, Xiaomeng [2 ]
机构
[1] State Grid Zhejiang Elect Power Co Ltd, Econ & Technol Res Inst, Hangzhou 310016, Peoples R China
[2] China Jiliang Univ, Coll Qual & Safety Engn, Hangzhou 310018, Peoples R China
来源
FIRE-SWITZERLAND | 2023年 / 6卷 / 05期
基金
中国国家自然科学基金;
关键词
lithium-ion battery; thermal runaway risk; safety; composite phase change material; temperature; CELLS; STABILITY;
D O I
10.3390/fire6050208
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
To reduce the thermal runaway risk of lithium-ion batteries, a good thermal management system is critically required. As phase change materials can absorb a lot of heat without the need for extra equipment, they are employed in the thermal management of batteries. The thermal management of a Sanyo 26,650 battery was studied in this work by using different composite phase change materials (CPCMs) at different charge-discharge rates. The thorough analysis on the thermal conductivity of CPCMs and the effect of CPCMs was conducted on the maximum surface temperature while charging and discharging. The findings demonstrate the ability of the composite thermal conductivity filler to increase thermal conductivity. It is increased to 1.307 W/(m K) as the ratio of silica and graphene is 1:1 (CPCM-3). The CPCMs can reduce the surface temperature of the cell, and the cooling effect of CPCM-3 is the most obvious, which can reduce the maximum temperature of the cell surface by 13.7 degrees C and 19 degrees C under 2 C and 3 C conditions. It is also found that the risk of thermal runaway of batteries under CPCMs thermal management is effectively reduced, ensuring the safe operation of the battery. This research can assist in the safe application of batteries and the development of new energy sources.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Flexible composite phase change materials with high thermal conductivity and electrical insulation properties for lithium-ion battery thermal management
    Ji, Jun
    An, Yihui
    Gu, Jie
    Zhang, Xuelai
    Zhang, Chaoxiang
    Shao, Zhenglong
    APPLIED THERMAL ENGINEERING, 2025, 266
  • [22] Organic and Inorganic Hybrid Composite Phase Change Material for Inhibiting the Thermal Runaway of Lithium-Ion Batteries
    Mei, Jie
    Shi, Guoqing
    Liu, He
    Wang, Zhi
    BATTERIES-BASEL, 2023, 9 (10):
  • [23] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [24] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    Tang, W.
    Xu, X. M.
    Li, R. Z.
    Jin, H. F.
    Cao, L. D.
    Wang, H. M.
    IONICS, 2020, 26 (12) : 6133 - 6143
  • [25] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    W. Tang
    X. M. Xu
    R. Z. Li
    H. F. Jin
    L. D. Cao
    H. M. Wang
    Ionics, 2020, 26 : 6133 - 6143
  • [26] Experimental study on the effect of phase change material on thermal runaway characteristics of lithium-ion battery under different triggering methods
    Mei, Jie
    Shi, Guoqing
    Li, Qing
    Liu, He
    Wang, Zhi
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [27] Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement
    Dai, Xinyi
    Kong, Depeng
    Du, Jin
    Zhang, Yue
    Ping, Ping
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 159 : 232 - 242
  • [28] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [29] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Chonglv Cheng
    Fanfu Kong
    Conghui Shan
    Baopeng Xu
    Fire Technology, 2023, 59 : 1073 - 1087
  • [30] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81