Optical Convolutional Neural Networks: Methodology and Advances (Invited)

被引:3
|
作者
Meng, Xiangyan [1 ,2 ,3 ]
Shi, Nuannuan [1 ,2 ,3 ]
Li, Guangyi [1 ,2 ,3 ]
Li, Wei [1 ,2 ,3 ]
Zhu, Ninghua [1 ,2 ,3 ]
Li, Ming [1 ,2 ,3 ]
机构
[1] Inst Semicond, Chinese Acad Sci, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
convolutional neural networks; optical computing; photonics signal processing; ARTIFICIAL-INTELLIGENCE; MOORES LAW; BACKPROPAGATION; DESIGN; CLASSIFICATION; ACCELERATOR;
D O I
10.3390/app13137523
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a leading branch of deep learning, the convolutional neural network (CNN) is inspired by the natural visual perceptron mechanism of living things, showing great application in image recognition, language processing, and other fields. Photonics technology provides a new route for intelligent signal processing with the dramatic potential of its ultralarge bandwidth and ultralow power consumption, which automatically completes the computing process after the signal propagates through the processor with an analog computing architecture. In this paper, we focus on the key enabling technology of optical CNN, including reviewing the recent advances in the research hotspots, overviewing the current challenges and limitations that need to be further overcome, and discussing its potential application.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review
    Bera, Somenath
    Shrivastava, Vimal K.
    Satapathy, Suresh Chandra
    CMES - Computer Modeling in Engineering and Sciences, 2022, 133 (02): : 219 - 250
  • [22] Computational multi-wavelength phase synthesis using convolutional neural networks [Invited]
    Bazow, Brad
    Thuc Phan
    Raub, Christopher B.
    Nehmetallah, George
    APPLIED OPTICS, 2022, 61 (05) : B132 - B146
  • [23] Classification of Optical Coherence Tomography using Convolutional Neural Networks
    Saraiva, A. A.
    Santos, D. B. S.
    Pedro, Pimentel
    Moura Sousa, Jose Vigno
    Fonseca Ferreira, N. M.
    Batista Neto, J. E. S.
    Soares, Salviano
    Valente, Antonio
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 168 - 175
  • [24] Knowledge distillation circumvents nonlinearity for optical convolutional neural networks
    Xiang, Jinlin
    Colburn, Shane
    Majumdar, Arka
    Shlizerman, Eli
    APPLIED OPTICS, 2022, 61 (09) : 2173 - 2183
  • [25] 11 TOPS photonic convolutional accelerator for optical neural networks
    Xu, Xingyuan
    Tan, Mengxi
    Corcoran, Bill
    Wu, Jiayang
    Boes, Andreas
    Nguyen, Thach G.
    Chu, Sai T.
    Little, Brent E.
    Hicks, Damien G.
    Morandotti, Roberto
    Mitchell, Arnan
    Moss, David J.
    NATURE, 2021, 589 (7840) : 44 - +
  • [26] 11 TOPS photonic convolutional accelerator for optical neural networks
    Xingyuan Xu
    Mengxi Tan
    Bill Corcoran
    Jiayang Wu
    Andreas Boes
    Thach G. Nguyen
    Sai T. Chu
    Brent E. Little
    Damien G. Hicks
    Roberto Morandotti
    Arnan Mitchell
    David J. Moss
    Nature, 2021, 589 : 44 - 51
  • [27] Optical diagnosis of colorectal polyps using convolutional neural networks
    Rawen Kader
    Andreas V Hadjinicolaou
    Fanourios Georgiades
    Danail Stoyanov
    Laurence B Lovat
    World Journal of Gastroenterology, 2021, 27 (35) : 5908 - 5918
  • [28] All-optical computing based on convolutional neural networks
    Liao, Kun
    Chen, Ye
    Yu, Zhongcheng
    Hu, Xiaoyong
    Wang, Xingyuan
    Lu, Cuicui
    Lin, Hongtao
    Du, Qingyang
    Hu, Juejun
    Gong, Qihuang
    OPTO-ELECTRONIC ADVANCES, 2021, 4 (11)
  • [29] All-optical computing based on convolutional neural networks
    Kun Liao
    Ye Chen
    Zhongcheng Yu
    Xiaoyong Hu
    Xingyuan Wang
    Cuicui Lu
    Hongtao Lin
    Qingyang Du
    Juejun Hu
    Qihuang Gong
    Opto-Electronic Advances, 2021, 4 (11) : 50 - 58
  • [30] Towards On-Chip Optical FFTs for Convolutional Neural Networks
    George, Jonathan K.
    Nejadriahi, Hani
    Sorger, Volker J.
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 259 - 262