Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural network and Gaussian process regression

被引:4
|
作者
Wei Zhiyuan [1 ]
Liu Changying [1 ]
Sun Xiaowen [1 ]
Li Yiduo [1 ]
Lu Haiyan [2 ,3 ]
机构
[1] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130021, Peoples R China
[2] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China
[3] Jilin Univ, Changsha Automobile Innovat Res Inst, Changsha 410006, Peoples R China
关键词
lithium-ion batteries; RUL prediction; double exponential model; neural network; Gaussian process regression (GPR); INCREMENTAL CAPACITY; HEALTH; STATE; MODEL; VOLTAGE;
D O I
10.1007/s11708-023-0906-4
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries (LIBs) are widely used in transportation, energy storage, and other fields. The prediction of the remaining useful life (RUL) of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery. In order to improve the prediction accuracy of the RUL of LIBs, a two-phase RUL early prediction method combining neural network and Gaussian process regression (GPR) is proposed. In the initial phase, the features related to the capacity degradation of LIBs are utilized to train the neural network model, which is used to predict the initial cycle lifetime of 124 LIBs. The Pearson coefficient's two most significant characteristic factors and the predicted normalized lifetime form a 3D space. The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated, and the shortest distance is considered to have a similar degradation pattern, which is used to determine the initial Dual Exponential Model (DEM). In the second phase, GPR uses the DEM as the initial parameter to predict each test set's early RUL (ERUL). By testing four batteries under different working conditions, the RMSE of all capacity estimation is less than 1.2%, and the accuracy percentage (AP) of remaining life prediction is more than 98%. Experiments show that the method does not need human intervention and has high prediction accuracy.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 50 条
  • [41] Remaining useful life prediction of lithium-ion batteries using a fusion method based on Wasserstein GAN
    Zhou Wending
    Bao Shijian
    Xu Fangmin
    Zhao Chenglin
    The Journal of China Universities of Posts and Telecommunications, 2020, 27 (01) : 1 - 9
  • [42] Online Remaining Useful Life Prediction of Lithium-ion Batteries Based on Hybrid Model
    Sun, Jing
    Yan, Huiyi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (04)
  • [43] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    ENERGY, 2021, 234
  • [44] Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR
    He B.
    Yang X.
    Wang J.
    Zhu X.
    Hu Z.
    Liu Q.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 484 - 491
  • [45] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    Energy, 2021, 234
  • [46] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)
  • [47] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [48] Remaining useful life prediction of-Lithium batteries based on principal component analysis and improved Gaussian process regression
    Xing, Jiang
    Zhang, Huilin
    Zhang, Jianping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (04):
  • [49] Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors
    Yang, Hao
    Wang, Penglei
    An, Yabin
    Shi, Changli
    Sun, Xianzhong
    Wang, Kai
    Zhang, Xiong
    Wei, Tongzhen
    Ma, Yanwei
    ETRANSPORTATION, 2020, 5
  • [50] Remaining Useful Life Prediction of Power Lithium-Ion Battery based on Artificial Neural Network Model
    Hou, Enguang
    Qiao, Xin
    Liu, Guangmin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC, CONTROL AND AUTOMATION ENGINEERING (MECAE 2017), 2017, 61 : 371 - 374