Abelian groups from random hypergraphs

被引:0
|
作者
Newman, Andrew [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2023年 / 32卷 / 04期
基金
美国国家科学基金会;
关键词
Random matrices; random hypergraphs; HOMOLOGICAL CONNECTIVITY; TOP HOMOLOGY;
D O I
10.1017/S0963548323000056
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a k-uniform hypergraph H on vertex set {1, . . . , n} we associate a particular signed incidence matrix M(H) over the integers. For H similar to H-k(n, p) an Erdos-Renyi random k-uniform hypergraph, coker(M(H)) is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for p = omega(1/n(k-1)), coker(M(H)) is torsion-free.
引用
收藏
页码:654 / 664
页数:11
相关论文
共 50 条
  • [1] ABELIAN-GROUPS AND HYPERGRAPHS
    FOLDES, S
    SINGHI, NM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A571 - A571
  • [2] ON HYPERGRAPHS OF MINIMAL AND PRIME MODELS OF THEORIES OF ABELIAN GROUPS
    Sudoplatov, Sergey Vladimirovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1137 - 1154
  • [3] Linear quasi-randomness of subsets of abelian groups and hypergraphs
    Aigner-Horev, Elad
    Han, Hiep
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 88
  • [4] RANDOM WALKS ON DISCRETE ABELIAN GROUPS
    Myronyuk, Margaryta
    COLLOQUIUM MATHEMATICUM, 2018, 152 (02) : 273 - 284
  • [5] Generating random elements of abelian groups
    Lukács, A
    RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (04) : 437 - 445
  • [6] On Linear Configurations in Subsets of Compact Abelian Groups, and Invariant Measurable Hypergraphs
    Pablo Candela
    Balázs Szegedy
    Lluís Vena
    Annals of Combinatorics, 2016, 20 : 487 - 524
  • [7] On Linear Configurations in Subsets of Compact Abelian Groups, and Invariant Measurable Hypergraphs
    Candela, Pablo
    Szegedy, Balazs
    Vena, Lluis
    ANNALS OF COMBINATORICS, 2016, 20 (03) : 487 - 524
  • [8] GEOMETRY OF RANDOM CAYLEY GRAPHS OF ABELIAN GROUPS
    Hermon, Jonathan
    Olesker-Taylor, Sam
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (05): : 3520 - 3562
  • [9] RANDOM MEASURES IN NON-ABELIAN GROUPS
    TORTRAT, A
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1969, 5 (01): : 31 - &
  • [10] Random walks on abelian-by-cyclic groups
    Pittet, C
    Saloff-Coste, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) : 1071 - 1079