GEOMETRY OF RANDOM CAYLEY GRAPHS OF ABELIAN GROUPS

被引:0
|
作者
Hermon, Jonathan [1 ]
Olesker-Taylor, Sam [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Univ Warwick, Dept Stat, Coventry, England
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 05期
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Typical distance; diameter; spectral gap; relaxation time; random Cayley graphs; RANDOM RANDOM-WALKS; DIAMETER; EXPANSION;
D O I
10.1214/22-AAP1899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the random Cayley graph of a finite Abelian group G with re-spect to k generators chosen uniformly at random, with 1 << log k << log |G|. Draw a vertex U <^> Unif(G).We show that the graph distance dist(id, U) from the identity to U con-centrates at a particular value M, which is the minimal radius of a ball in Zk of cardinality at least |G|, under mild conditions. In other words, the distance from the identity for all but o(|G|) of the elements of G lies in the interval [M -o(M), M +o(M)]. In the regime k greater than or similar to log |G|, we show that the diameter of the graph is also asymptotically M. In the spirit of a conjecture of Aldous and Diaconis (Technical Report 231 (1985)), this M depends only on k and |G|, not on the algebraic structure of G.Write d(G) for the minimal size of a generating subset of G. We prove that the order of the spectral gap is |G|(-2/k) when k - d(G) asymptotic to k and |G| lies in a density-1 subset of N or when k - 2d (G) asymptotic to k. This extends, for Abelian groups, a celebrated result of Alon and Roichman (Random Structures Algorithms 5 (1994) 271-284).The aforementioned results all hold with high probability over the random Cayley graph.
引用
收藏
页码:3520 / 3562
页数:43
相关论文
共 50 条
  • [1] Geometry and diameter bounds of directed Cayley graphs of Abelian groups
    Fiduccia, CM
    Forcade, RW
    Zito, JS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (01) : 157 - 167
  • [2] Cayley graphs on abelian groups
    Edward Dobson
    Pablo Spiga
    Gabriel Verret
    Combinatorica, 2016, 36 : 371 - 393
  • [3] On Cayley graphs of Abelian groups
    Li, CH
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (02) : 205 - 215
  • [4] Cayley graphs on abelian groups
    Dobson, Edward
    Spiga, Pablo
    Verret, Gabriel
    COMBINATORICA, 2016, 36 (04) : 371 - 393
  • [5] On Cayley Graphs of Abelian Groups
    Cai Heng Li
    Journal of Algebraic Combinatorics, 1998, 8 : 205 - 215
  • [6] Asymptotic Metric Behavior of Random Cayley Graphs of Finite Abelian Groups
    Uri Shapira
    Reut Zuck
    Combinatorica, 2019, 39 : 1133 - 1148
  • [7] Asymptotic Metric Behavior of Random Cayley Graphs of Finite Abelian Groups
    Shapira, Uri
    Zuck, Reut
    COMBINATORICA, 2019, 39 (05) : 1133 - 1148
  • [8] Large Cayley graphs on an abelian groups
    Garcia, C
    Peyrat, C
    DISCRETE APPLIED MATHEMATICS, 1997, 75 (02) : 125 - 133
  • [9] Isomorphism and Cayley graphs on abelian groups
    Alspach, B
    GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, 1997, 497 : 1 - 22
  • [10] Pancyclicity and Cayley Graphs on Abelian Groups
    Alspach, Brian
    Bendit, Theo
    Maitland, Christopher
    JOURNAL OF GRAPH THEORY, 2013, 74 (03) : 260 - 274