Thermal Performance Assessment of Aerogel Application in Additive Construction of Energy-Efficient Buildings

被引:7
|
作者
Kotov, Evgeny Vladimirovich [1 ]
Nemova, Darya [1 ]
Sergeev, Vitaly [1 ]
Dontsova, Anna [1 ]
Koriakovtseva, Tatyana [1 ]
Andreeva, Darya [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Lab Protected & Modular Struct, St Petersburg 195251, Russia
基金
俄罗斯科学基金会;
关键词
aerogel; thermal performance; additive building structure; thermal conductivity; energy efficiency; ENHANCED SYSTEMS; GLAZING SYSTEM; BLANKETS; GRANULES;
D O I
10.3390/su16062398
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main development direction of energy efficiency technologies in construction is the creation of various materials with complex structures and unique strength, thermal properties, and other properties. The aerogel is a material with high porosity and excellent thermal insulation properties. This paper provides state-of-the-art aerogel applications for the additive manufacturing of energy-efficient buildings. This work provides the experimental and numerical assessment results of the thermal conductivity of aerogel-enhanced blanket, the experimental assessment results of thermal performance of aerogel-enhanced building structure, the experimental assessment results of the aerogel application as a mixture powder component of the concrete mixture to printing buildings, and the experimental assessment results of the aerogel application as a parget powder component. Experimental results show the effect of aerogel powder component application: thermal conductivity decreased by 25%.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] ENERGY-EFFICIENT BUILDINGS - WAGNER,WF
    HOKE, JR
    AIA JOURNAL-AMERICAN INSTITUTE OF ARCHITECTS, 1981, 70 (01): : 84 - +
  • [32] Toward energy-efficient buildings in Oman
    Al-Badi, A. H.
    Al-Saadi, S. N.
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2020, 39 (05) : 412 - 433
  • [33] The Performance Study of Modified Glass Wool Board External Thermal Insulation System and the Application in the Energy-efficient Construction in Existing Building
    Lu, Guo-Zhong
    Zheng, Xue-Song
    Ding, Xiu-Juan
    Zhao, Wei-Xuan
    PROCEEDINGS OF THE 2ND ANNUAL INTERNATIONAL CONFERENCE ON ADVANCED MATERIAL ENGINEERING (AME 2016), 2016, 85 : 825 - 839
  • [34] Driving Data into Energy-Efficient Buildings
    Sutherland, Brandon R.
    JOULE, 2020, 4 (11) : 2256 - 2258
  • [35] Automated Planner for Energy-efficient Buildings
    Ngoko, Yanik
    Cerin, Christophe
    2017 IEEE 10TH CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA), 2017, : 147 - 154
  • [36] An integrated system for buildings' energy-efficient automation: Application in the tertiary sector
    Marinakis, Vangelis
    Doukas, Haris
    Karakosta, Charikleia
    Psarras, John
    APPLIED ENERGY, 2013, 101 : 6 - 14
  • [37] ENERGY-EFFICIENT RETROFITTING OF OFFICE BUILDINGS
    NILSSON, PE
    ARONSSON, S
    JAGEMAR, L
    ENERGY AND BUILDINGS, 1994, 21 (03) : 175 - 185
  • [38] Energy-efficient elevators for tall buildings
    Hakala, H
    Siikonen, ML
    Tyni, T
    Ylinen, J
    TALL BUILDINGS AND URBAN HABITAT: CITIES IN THE THIRD MILLENNIUM, 2001, : 559 - 574
  • [39] ENERGY-EFFICIENT BUILDINGS - WAGNER,WF
    STEVENS, T
    RIBA JOURNAL-ROYAL INSTITUTE OF BRITISH ARCHITECTS, 1981, 88 (06): : 23 - 23
  • [40] Functional materials for energy-efficient buildings
    Ebert, H. -P.
    LECTURES NOTES - JOINT EPS-SIF INTERNATIONAL SCHOOL ON ENERGY - COURSE 2 ENERGY: BASIC CONCEPTS AND FOREFRONT IDEAS, 2015, 98