Unsupervised machine learning methods and emerging applications in healthcare

被引:51
|
作者
Eckhardt, Christina M. [1 ]
Madjarova, Sophia J. [2 ,3 ]
Williams, Riley J. [2 ,3 ]
Ollivier, Mattheu [4 ]
Karlsson, Jon [5 ]
Pareek, Ayoosh [2 ,3 ]
Nwachukwu, Benedict U. [2 ,3 ]
机构
[1] Columbia Univ, Dept Med, Coll Phys & Surg, Div Pulm Allergy & Crit Care Med,Irving Med Ctr, New York, NY USA
[2] Hosp Special Surg, Dept Orthoped Surg & Sports Med, 535 East 70th St, New York, NY 10021 USA
[3] Hosp Special Surg, Dept Orthoped Surg & Sports Med, Shoulder Serv, 535 East 70th St, New York, NY 10021 USA
[4] Aix Marseille Univ, Inst Movement & Appareil Locomoteur, Marseille, France
[5] Gothenburg Univ, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Dept Orthopaed, Gothenburg, Sweden
关键词
Machine learning; Editorial; Artificial intelligence; Computational models; Analytics; ALGORITHMS;
D O I
10.1007/s00167-022-07233-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Unsupervised machine learning methods are important analytical tools that can facilitate the analysis and interpretation of high-dimensional data. Unsupervised machine learning methods identify latent patterns and hidden structures in high-dimensional data and can help simplify complex datasets. This article provides an overview of key unsupervised machine learning techniques including K-means clustering, hierarchical clustering, principal component analysis, and factor analysis. With a deeper understanding of these analytical tools, unsupervised machine learning methods can be incorporated into health sciences research to identify novel risk factors, improve prevention strategies, and facilitate delivery of personalized therapies and targeted patient care.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [31] Mechanistic Machine Learning: Theory, Methods, and Applications
    Perdikaris, Paris
    Tang, Shaoqiang
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2020, 10 (03) : 141 - 142
  • [32] Definitions, methods, and applications in interpretable machine learning
    Murdoch, W. James
    Singh, Chandan
    Kumbier, Karl
    Abbasi-Asl, Reza
    Yu, Bin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (44) : 22071 - 22080
  • [33] Mechanistic Machine Learning:Theory, Methods, and Applications
    Paris Perdikaris
    Shaoqiang Tang
    Theoretical & Applied Mechanics Letters, 2020, (03) : 141 - 142
  • [34] Machine learning for synthetic biology: Methods and applications
    Hu, Ruyun
    Zhang, Songya
    Meng, Hailin
    Yu, Han
    Zhang, Jianzhi
    Luo, Xiaozhou
    Si, Tong
    Liu, Chenli
    Qiao, Yu
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (03): : 284 - 299
  • [35] Informatics and machine learning methods for health applications
    Shen, Li
    Shi, Xinghua
    Zhao, Zhongming
    Wang, Kai
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (Suppl 11)
  • [36] Comparing unsupervised probabilistic machine learning methods for market basket analysis
    Harald Hruschka
    Review of Managerial Science, 2021, 15 : 497 - 527
  • [37] Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection
    Iqbal, Talha
    Elahi, Adnan
    Wijns, William
    Shahzad, Atif
    FRONTIERS IN MEDICAL TECHNOLOGY, 2022, 4
  • [38] Classification of lidar measurements using supervised and unsupervised machine learning methods
    Farhani, Ghazal
    Sica, Robert J.
    Daley, Mark Joseph
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (01) : 391 - 402
  • [39] Informatics and machine learning methods for health applications
    Li Shen
    Xinghua Shi
    Zhongming Zhao
    Kai Wang
    BMC Medical Informatics and Decision Making, 20
  • [40] Generating Artificial Sensor Data for the Comparison of Unsupervised Machine Learning Methods
    Zimmering, Bernd
    Niggemann, Oliver
    Hasterok, Constanze
    Pfannstiel, Erik
    Ramming, Dario
    Pfrommer, Julius
    SENSORS, 2021, 21 (07)