Computation offloading in blockchain-enabled MCS systems: A scalable deep reinforcement learning approach

被引:13
|
作者
Chen, Zheyi [1 ,2 ,3 ]
Zhang, Junjie [1 ,2 ,3 ]
Huang, Zhiqin [1 ,2 ,3 ]
Wang, Pengfei [1 ,2 ,3 ]
Yu, Zhengxin [4 ]
Miao, Wang [5 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Minist Educ, Engn Res Ctr Big Data Intelligence, Fuzhou 350002, Peoples R China
[3] Fuzhou Univ, Fujian Key Lab Network Comp & Intelligent Informat, Fuzhou 350116, Peoples R China
[4] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4YW, England
[5] Univ Plymouth, Sch Engn Comp & Math, Plymouth PL4 8AA, England
基金
中国国家自然科学基金;
关键词
Mobile crowdsensing; Blockchain; Computation offloading; Deep reinforcement learning; Model scalability; EFFICIENT RESOURCE-ALLOCATION; MOBILE; PRIVACY; IOT;
D O I
10.1016/j.future.2023.12.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In Mobile Crowdsensing (MCS) systems, cloud service providers (CSPs) pay for and analyze the sensing data collected by mobile devices (MDs) to enhance the Quality-of-Service (QoS). Therefore, it is necessary to guarantee security when CSPs and users conduct transactions. Blockchain can secure transactions between two parties by using the Proof-of-Work (PoW) to confirm transactions and add new blocks to the chain. Nevertheless, the complex PoW seriously hinders applying Blockchain into MCS since MDs are equipped with limited resources. To address these challenges, we first design a new consortium blockchain framework for MCS, aiming to assure high reliability in complex environments, where a novel Credit-based Proof-of-Work (C-PoW) algorithm is developed to relieve the complexity of PoW while keeping the reliability of blockchain. Next, we propose a new scalable Deep Reinforcement learning based Computation Offloading (DRCO) method to handle the computation-intensive tasks of C-PoW. By combining Proximal Policy Optimization (PPO) and Differentiable Neural Computer (DNC), the DRCO can efficiently make the optimal/near-optimal offloading decisions for C-PoW tasks in blockchain-enabled MCS systems. Extensive experiments demonstrate that the DRCO reaches a lower total cost (weighted sum of latency and power consumption) than state-of-the-art methods under various scenarios.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [41] Energy-Efficient Resource Allocation for Blockchain-Enabled Industrial Internet of Things With Deep Reinforcement Learning
    Yang, Le
    Li, Meng
    Si, Pengbo
    Yang, Ruizhe
    Sun, Enchang
    Zhang, Yanhua
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2318 - 2329
  • [42] Joint Optimization for Mobile Edge Computing-Enabled Blockchain Systems: A Deep Reinforcement Learning Approach
    Hu, Zhuoer
    Gao, Hui
    Wang, Taotao
    Han, Daoqi
    Lu, Yueming
    SENSORS, 2022, 22 (09)
  • [43] A Multi-Agent Reinforcement Learning-Based Task-Offloading Strategy in a Blockchain-Enabled Edge Computing Network
    Liu, Chenlei
    Sun, Zhixin
    MATHEMATICS, 2024, 12 (14)
  • [44] An Energy-efficient Computing Offloading Framework for Blockchain-enabled Video Streaming Systems
    Yuan, Shijing
    Li, Jie
    Zhu, Yuxuan
    Wu, Chentao
    Ding, Yue
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5183 - 5188
  • [45] DRL-Based V2V Computation Offloading for Blockchain-Enabled Vehicular Networks
    Shi, Jinming
    Du, Jun
    Shen, Yuan
    Wang, Jian
    Yuan, Jian
    Han, Zhu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (07) : 3882 - 3897
  • [46] A Novel Deep Reinforcement Learning Approach for Task Offloading in MEC Systems
    Liu, Xiaowei
    Jiang, Shuwen
    Wu, Yi
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [47] Blockchain-enabled Federated Learning: A Survey
    Qu, Youyang
    Uddin, Md Palash
    Gan, Chenquan
    Xiang, Yong
    Gao, Longxiang
    Yearwood, John
    ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [48] Computation Offloading and Resource Allocation in NOMA-MEC: A Deep Reinforcement Learning Approach
    Shang, Ce
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15464 - 15476
  • [49] NOMA-Enabled Cooperative Computation Offloading for Blockchain-Empowered Internet of Things: A Learning Approach
    Li, Zhenni
    Xu, Minrui
    Nie, Jiangtian
    Kang, Jiawen
    Chen, Wuhui
    Xie, Shengli
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2364 - 2378
  • [50] Blockchain-enabled trust management for secure content caching in mobile edge computing using deep reinforcement learning
    Bounaira, Soumaya
    Alioua, Ahmed
    Souici, Ismahane
    INTERNET OF THINGS, 2024, 25