Reinforcement learning-based approach for plastic texture surface defects inspection

被引:0
|
作者
Ho, Chao-Ching [1 ]
Chiao, Yuan-Cheng [1 ]
Su, Eugene [1 ]
机构
[1] Natl Taipei Univ Technol, Grad Inst Mfg Technol, Dept Mech Engn, Taipei, Taiwan
来源
VISUAL COMPUTER | 2024年 / 40卷 / 06期
关键词
Automated optical inspection; Texture synthesis; Reinforcement learning; Transfer learning; Deep learning;
D O I
10.1007/s00371-023-03077-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a novel data-enhanced virtual texture generation network for use in deep learning detection systems. The current methods of data enhancement, such as image flipping, scaling ratios, or Generative Adversarial Networks, have limitations as they cannot determine characteristics beyond the training data. The proposed system uses the texture characteristics of a learning surface to generate surface textures through the Open Graphics Library, which can simulate material textures, light sources, and shadow effects. This enables the generation of required texture parameters for the Reinforcement Learning Network to conduct parameter search. The generated image is authenticated by a discriminator, and the reward score is fed back into the critic network to update the value network. The proposed system can complement the imbalance of defective data types, generate large quantities of random and non-defective data, and automatically classify and label during the generation process, reducing labor consumption and improving labeling accuracy. The study found that the proposed data enhancement method can increase the diversity of data characteristics, and the generated data can increase the recall rate of test and verification data sets. Specifically, the proposed system increased the recall rate of test data sets with different distributions from 78.21% to 82.40% and the recall rate of verification data sets with the same distribution from 81.64 to 91.94%.
引用
收藏
页码:4201 / 4220
页数:20
相关论文
共 50 条
  • [41] A Reinforcement Learning-Based Adaptive Learning System
    Shawky, Doaa
    Badawi, Ashraf
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 221 - 231
  • [42] Approximate Logic Synthesis: A Reinforcement Learning-Based Technology Mapping Approach
    Pasandi, Ghasem
    Nazarian, Shahin
    Pedram, Massoud
    PROCEEDINGS OF THE 2019 20TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2019, : 26 - 32
  • [43] Energy Trading in Smart Grid: A Deep Reinforcement Learning-based Approach
    Zhang, Feiye
    Yang, Qingyu
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3677 - 3682
  • [44] Load Balancing for Ultradense Networks: A Deep Reinforcement Learning-Based Approach
    Xu, Yue
    Xu, Wenjun
    Wang, Zhi
    Lin, Jiaru
    Cui, Shuguang
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (06): : 9399 - 9412
  • [45] A Meta Reinforcement Learning-based Approach for Self-Adaptive System
    Zhang, Mingyue
    Li, Jialong
    Zhao, Haiyan
    Tei, Kenji
    Honiden, Shinichi
    Jin, Zhi
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS (ACSOS 2021), 2021, : 1 - 10
  • [46] A Reinforcement Learning-based Approach to Dynamic Job-shop Scheduling
    WEI YingZi ZHAO MingYang Shenyang Institute of AutomationChinese Academy of SciencesShenyang Shenyang Ligong UniversityShenyang
    自动化学报, 2005, (05) : 113 - 119
  • [47] A Generic Spatiotemporal Scheduling for Autonomous UAVs: A Reinforcement Learning-Based Approach
    Bouhamed, Omar
    Ghazzai, Hakim
    Besbes, Hichem
    Massoud, Yehia
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2020, 1 : 93 - 106
  • [48] Reinforcement Learning-Based Rumor Blocking Approach in Directed Social Networks
    He, Qiang
    Lv, Yingjie
    Wang, Xingwei
    Huang, Min
    Cai, Yuliang
    IEEE SYSTEMS JOURNAL, 2022, 16 (04): : 6457 - 6467
  • [49] A Safe Training Approach for Deep Reinforcement Learning-based Traffic Engineering
    Wang, Linghao
    Wang, Miao
    Zhang, Yujun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1450 - 1455
  • [50] A Reinforcement Learning-Based Adaptive Path Tracking Approach for Autonomous Driving
    Shan, Yunxiao
    Zheng, Boli
    Chen, Longsheng
    Chen, Long
    Chen, De
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 10581 - 10595