Nucleic Acid Detection through RNA-Guided Protease Activity in Type III-E CRISPR-Cas Systems

被引:2
|
作者
He, Qiuqiu [1 ,2 ]
Lei, Xinlong [1 ,2 ]
Liu, Yuanjun [1 ,3 ]
Wang, Xiaoshen [1 ,2 ]
Ji, Nan [1 ,2 ]
Yin, Hang [4 ]
Wang, Huiping [1 ,3 ]
Zhang, Heng [1 ,2 ]
Yu, Guimei [1 ,2 ]
机构
[1] Tianjin Med Univ, Tianjin Med Univ Gen Hosp, Innovat Ctr Med Epigenet, Key Lab Immune Microenvironm & Dis,Minist Educ,Pro, Tianjin 300070, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Tianjin 300070, Peoples R China
[3] Tianjin Med Univ, Gen Hosp, Dept Dermatovenereol, 154 Anshan Rd, Tianjin 300052, Peoples R China
[4] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin 300070, Peoples R China
基金
中国国家自然科学基金;
关键词
Cas7-11; Craspase; CRISPR-Cas; nucleic acid detection; RNA-guided proteases; CRASPASE; CLEAVAGE;
D O I
10.1002/cbic.202300401
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-guided protease activity was recently discovered in the type III-E CRISPR-Cas systems (Craspase), providing a novel platform for engineering a protein probe instead of the commonly used nucleic acid probe in nucleic acid detection assays. Here, by adapting a fluorescence readout technique using the affinity- and fluorescent protein dual-tagged Csx30 protein substrate, we have established an assay monitoring Csx30 cleavage by target ssRNA-activated Craspase. Four Craspase-based nucleic acid detection systems for genes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), norovirus, and the influenza virus (IFV) were reconstituted with demonstrated specificity. The assay could reliably detect target ssRNAs at concentrations down to 25 pM, which could be further improved approximately 15 000-fold (ca. 2 fM) by incorporating a recombinase polymerase isothermal preamplification step. Importantly, the species-specific substrate cleavage specificity of Craspase enabled multiplexed diagnosis, as demonstrated by the reconstituted composite systems for simultaneous detection of two genes from the same virus (SARS-CoV-2, spike and nsp12) or two types of viruses (SARS-CoV-2 and IFV). The assay could be further expanded by diversifying the fluorescent tags in the substrate and including Craspase systems from various species, thus potentially providing an easily adaptable platform for clinical diagnosis. Two for one: We have established an assay for nucleic acid detection by using the target ssRNA-activated protease from the type III-E CRISPR-Cas system. This assay would allow simultaneous detection of one or two target genes or viruses, which could be further expanded by incorporating more type III-E systems of various species. This assay provides an easily adaptable platform for biological and clinical diagnosis.+image
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex
    Yu, Guimei
    Wang, Xiaoshen
    Zhang, Yi
    An, Qiyin
    Wen, Yanan
    Li, Xuzichao
    Yin, Hang
    Deng, Zengqin
    Zhang, Heng
    NATURE MICROBIOLOGY, 2022, 7 (12) : 2078 - +
  • [42] CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets
    Su, Weiran
    Li, Junru
    Ji, Chen
    Chen, Congshuo
    Wang, Yuzheng
    Dai, Huili
    Li, Fengqin
    Liu, Peifeng
    NANO RESEARCH, 2023, 16 (07) : 9940 - 9953
  • [43] CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets
    Weiran Su
    Junru Li
    Chen Ji
    Congshuo Chen
    Yuzheng Wang
    Huili Dai
    Fengqin Li
    Peifeng Liu
    Nano Research, 2023, 16 : 9940 - 9953
  • [44] Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers
    Niewoehner, Ole
    Garcia-Doval, Carmela
    Rostol, Jakob T.
    Berk, Christian
    Schwede, Frank
    Bigler, Laurent
    Hall, Jonathan
    Marraffini, Luciano A.
    Jinek, Martin
    NATURE, 2017, 548 (7669) : 543 - +
  • [45] Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus
    Karneyeva, Karyna
    Kolesnik, Matvey
    Livenskyi, Alexei
    Zgoda, Viktor
    Zubarev, Vasiliy
    Trofimova, Anna
    Artamonova, Daria
    Ispolatov, Yaroslav
    Severinov, Konstantin
    JOURNAL OF MOLECULAR BIOLOGY, 2024, 436 (06)
  • [46] Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA
    Millen, Anne M.
    Samson, Julie E.
    Tremblay, Denise M.
    Magadan, Alfonso H.
    Rousseau, Genevieve M.
    Moineau, Sylvain
    Romero, Dennis A.
    RNA BIOLOGY, 2019, 16 (04) : 461 - 468
  • [47] The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals
    Seruggia, Davide
    Montoliu, Lluis
    TRANSGENIC RESEARCH, 2014, 23 (05) : 707 - 716
  • [48] Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions
    Zhang, Xinfu
    An, Xinmin
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [49] RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus
    Staals, Raymond H. J.
    Zhu, Yifan
    Taylor, David W.
    Kornfeld, Jack E.
    Sharma, Kundan
    Barendregt, Arjan
    Koehorst, Jasper J.
    Vlot, Marnix
    Neupane, Nirajan
    Varossieau, Koen
    Sakamoto, Keiko
    Suzuki, Takehiro
    Dohmae, Naoshi
    Yokoyama, Shigeyuki
    Schaap, Peter J.
    Urlaub, Henning
    Heck, Albert J. R.
    Nogales, Eva
    Doudna, Jennifer A.
    Shinkai, Akeo
    van der Oost, John
    MOLECULAR CELL, 2014, 56 (04) : 518 - 530
  • [50] Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus
    Staals, Raymond H. J.
    Agari, Yoshihiro
    Maki-Yonekura, Saori
    Zhu, Yifan
    Taylor, David W.
    van Duijn, Esther
    Barendregt, Arjan
    Vlot, Marnix
    Koehorst, Jasper J.
    Sakamoto, Keiko
    Masuda, Akiko
    Dohmae, Naoshi
    Schaap, Peter J.
    Doudna, Jennifer A.
    Heck, Albert J. R.
    Yonekura, Koji
    van der Oost, John
    Shinkai, Akeo
    MOLECULAR CELL, 2013, 52 (01) : 135 - 145