Interpretable, predictive spatio-temporal models via enhanced pairwise directions estimation

被引:1
|
作者
Lue, Heng-Hui [1 ]
Tzeng, ShengLi [2 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung, Taiwan
[2] Natl Sun Yat sen Univ, Dept Appl Math, Kaohsiung, Taiwan
关键词
Covariates; dimension reduction; kriging; semi-parametric models; visualization; spatio-temporal data; SLICED INVERSE REGRESSION; DIMENSION REDUCTION; SPATIAL DATA; SIMULATION;
D O I
10.1080/02664763.2022.2147150
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article concerns predictive modeling for spatio-temporal data as well as model interpretation using data information in space and time. We develop a novel approach based on supervised dimension reduction for such data in order to capture nonlinear mean structures without requiring a prespecified parametric model. In addition to prediction as a common interest, this approach emphasizes the exploration of geometric information from the data. The method of Pairwise Directions Estimation (PDE) is implemented in our approach as a data-driven function searching for spatial patterns and temporal trends. The benefit of using geometric information from the method of PDE is highlighted, which aids effectively in exploring data structures. We further enhance PDE, referring to it as PDE+, by incorporating kriging to estimate the random effects not explained in the mean functions. Our proposal can not only increase prediction accuracy but also improve the interpretation for modeling. Two simulation examples are conducted and comparisons are made with several existing methods. The results demonstrate that the proposed PDE+ method is very useful for exploring and interpreting the patterns and trends for spatio-temporal data. Illustrative applications to two real datasets are also presented.
引用
收藏
页码:2914 / 2933
页数:20
相关论文
共 50 条
  • [31] Models and queries in a spatio-temporal GIS
    El-Geresy, B
    Jones, C
    INNOVATIONS IN GIS: GIS AND GEOCOMPUTATION, 2000, 7 : 27 - 39
  • [32] Reduced Rank Spatio-Temporal Models
    Pu, Dan
    Fang, Kuangnan
    Lan, Wei
    Yu, Jihai
    Zhang, Qingzhao
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2025, 43 (01) : 98 - 109
  • [33] Spatio-temporal expectile regression models
    Spiegel, Elmar
    Kneib, Thomas
    Otto-Sobotka, Fabian
    STATISTICAL MODELLING, 2020, 20 (04) : 386 - 409
  • [34] Spatio-temporal stationary covariance models
    Ma, CS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (01) : 97 - 107
  • [35] Spatio-temporal variograms and covariance models
    Ma, CS
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (03) : 706 - 725
  • [36] Additive models with spatio-temporal data
    Fang, Xiangming
    Chan, Kung-Sik
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (01) : 61 - 86
  • [37] Spatio-temporal Conditioned Language Models
    Diaz, Juglar
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2478 - 2478
  • [38] Matrix Autoregressive Spatio-Temporal Models
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1143 - 1155
  • [39] Monthly stream flow forecasting via dynamic spatio-temporal models
    Dehghani, Majid
    Saghafian, Bahram
    Rivaz, Firoozeh
    Khodadadi, Ahmad
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (03) : 861 - 874
  • [40] Conceptual models for spatio-temporal applications
    Tryfona, N
    Price, R
    Jensen, CS
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 79 - 116