Modeling of Shear Strength for Squat Reinforced Concrete Walls with Boundary Elements

被引:1
|
作者
Kim, Ju-Hyung [1 ]
Kim, Yail J. [1 ,2 ]
Park, Hong-Gun [3 ]
机构
[1] Univ Colorado Denver, Dept Civil Engn, Denver, CO 80204 USA
[2] Univ Colorado Denver, Bridge Engn Inst, Int Tech Soc, Denver, CO USA
[3] Seoul Natl Univ, Dept Architecture & Architectural Engn, Seoul, South Korea
关键词
boundary elements; capacity prediction; modeling; seismic; design; shear strength; squat walls; COMPRESSION-FIELD-THEORY; SEISMIC BEHAVIOR; LOAD BEHAVIOR;
D O I
10.14359/51739090
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents mechanics-based modeling methodologies to predict the shear strength of squat walls incorporating boundary elements. Developed with the intention of surmounting the limitations of empirical models that are prevalent in the structural engineering community, these approaches are composed of an iterative analytical method and simplified design equations. Conforming to experimental observations, a failure criterion is established to determine the web crushing and shear compression of each wall component. Upon validating the methodologies against 123 test data compiled from the literature, detailed responses of the wall system are examined to comprehend the behavior of the web and the compression and tension boundary elements subjected to lateral loading. Model outcomes indicate that the overall strength of the squat walls is distributed to the web and the boundary elements by 58% and 42%, respectively, signifying that the contribution of the boundary elements should not be ignored, unlike the case of most customary models. In contrast to the provision of published design specifications, both horizontal and vertical reinforcing bars affect the shear strength of the web concrete. The growth of compressive principal strains, which dominate the failure of the members, is a function of the reinforcement ratio. According to statistical evaluations, the proposed models outperform existing models in terms of capacity prediction. The effects of major parameters are articulated from a practical standpoint.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [41] Cyclic behaviour of squat reinforced concrete shear walls strengthened with ultra-high performance fiber reinforced concrete
    Nagib, Mohammed T.
    Sakr, Mohammed A.
    El-khoriby, Saher R.
    Khalifa, Tarek M.
    Engineering Structures, 2021, 246
  • [42] Shear response estimate for squat reinforced concrete walls via a single panel model
    Massone, Leonardo M.
    Ulloa, Marco A.
    EARTHQUAKES AND STRUCTURES, 2014, 7 (05) : 647 - 665
  • [43] Simplified Shear Strength Model of Reinforced Concrete Walls br
    Kim, Sung-Hyun
    Park, Hong-Gun
    Choi, Kyoung-Kyu
    ACI STRUCTURAL JOURNAL, 2022, 119 (05) : 69 - +
  • [44] Shear Strength of Reinforced Concrete Walls Subjected to Cyclic Loading
    Krolicki, J.
    Maffei, J.
    Calvi, G. M.
    JOURNAL OF EARTHQUAKE ENGINEERING, 2011, 15 : 30 - 71
  • [45] Shear strength and cracking behavior of reinforced concrete nonstructural walls
    Matsubayashi, Miki
    Takase, Yuya
    Mizoguchi, Mitsuo
    JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, 2022, 21 (02) : 380 - 392
  • [46] Peak Strength of Shear-Critical Reinforced Concrete Walls
    Luna, Bismarck N.
    Whittaker, Andrew S.
    ACI STRUCTURAL JOURNAL, 2019, 116 (02) : 257 - 266
  • [47] Modeling cyclic behavior of squat reinforced concrete walls exposed to acid deposition
    Zhou, Yan
    Chen, Liuzhuo
    Long, Li
    JOURNAL OF BUILDING ENGINEERING, 2023, 63
  • [48] Reinforced Concrete Structural Walls without Special Boundary Elements
    Motter, Christopher J.
    Abdullah, Saman A.
    Wallace, John W.
    ACI STRUCTURAL JOURNAL, 2018, 115 (03) : 723 - 733
  • [49] Strength and drift capacity of squat recycled concrete shear walls under cyclic loading
    Peng, Youkai
    Wu, Hui
    Yan Zhuge
    ENGINEERING STRUCTURES, 2015, 100 : 356 - 368
  • [50] Seismic behavior of reinforced concrete squat walls with high strength reinforcements: An experimental study
    Chen, Xiao-Lei
    Fu, Jian-Ping
    Hao, Xin
    Yang, Hong
    Zhang, De-Yi
    STRUCTURAL CONCRETE, 2019, 20 (03) : 911 - 931