Advancing Spectral Clustering for Categorical and Mixed-Type Data: Insights and Applications

被引:2
|
作者
Di Nuzzo, Cinzia [1 ]
机构
[1] Univ Catania, Dept Econ & Business, Corso Italia 55, I-95129 Catania, Italy
关键词
spectral clustering; categorical data; mixed-type data; kernel functions; 6207; 6209;
D O I
10.3390/math12040508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study focuses on adapting spectral clustering, a numeric data-clustering technique, for categorical and mixed-type data. The method enhances spectral clustering for categorical and mixed-type data with novel kernel functions, showing improved accuracy in real-world applications. Despite achieving better clustering for datasets with mixed variables, challenges remain in identifying suitable kernel functions for categorical relationships.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Composite likelihood methods for parsimonious model-based clustering of mixed-type data
    Ranalli, Monia
    Rocci, Roberto
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (02) : 381 - 407
  • [42] Composing Tree Graphical Models with Persistent Homology Features for Clustering Mixed-Type Data
    Ni, Xiuyan
    Quadrianto, Novi
    Wang, Yusu
    Chen, Chao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [43] Growing Self-Organizing Map with cross insert for mixed-type data clustering
    Tai, Wei-Shen
    Hsu, Chung-Chian
    APPLIED SOFT COMPUTING, 2012, 12 (09) : 2856 - 2866
  • [44] An equi-biased k-prototypes algorithm for clustering mixed-type data
    Sangam, Ravi Sankar
    Om, Hari
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (03):
  • [45] An equi-biased k-prototypes algorithm for clustering mixed-type data
    Ravi Sankar Sangam
    Hari Om
    Sādhanā, 2018, 43
  • [46] Hypergraph-Based Spectral Clustering for Categorical Data
    Li, Yang
    Guo, Chonghui
    2015 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2015, : 396 - 401
  • [47] SpectralCAT: Categorical spectral clustering of numerical and nominal data
    David, Gil
    Averbuch, Amir
    PATTERN RECOGNITION, 2012, 45 (01) : 416 - 433
  • [48] Performances of parallel clustering algorithm for categorical and mixed data
    Hai, NTM
    Susumu, H
    PARALLEL AND DISTRIBUTED COMPUTING: APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2004, 3320 : 252 - 256
  • [49] Clustering mixed numerical and categorical data with missing values
    Dinh, Duy-Tai
    Huynh, Van-Nam
    Sriboonchitta, Songsak
    INFORMATION SCIENCES, 2021, 571 : 418 - 442
  • [50] Clustering Mixed Numeric and Categorical Data With Cuckoo Search
    Ji, Jinchao
    Pang, Wei
    Li, Zairong
    He, Fei
    Feng, Guozhong
    Zhao, Xiaowei
    IEEE ACCESS, 2020, 8 : 30988 - 31003