Parameter extraction in thin film transistors using artificial neural networks

被引:1
|
作者
Valdes, Roberto C. [1 ]
Garcia, Farid [1 ]
Garcia, Rodolfo Z. [1 ]
Lopez, Asdrubal [1 ]
Hernandez, Norberto [2 ]
机构
[1] Autonomous Univ State of Mexico, Toluca, State Of Mexico, Mexico
[2] IPN, Nanosci Micro & Nanotechnol Ctr, Mexico City, Mexico
关键词
Extraction - Gallium compounds - II-VI semiconductors - Learning systems - Neural networks - Parameter extraction - Thin film circuits - Thin films - Threshold voltage - Zinc oxide;
D O I
10.1007/s10854-023-09953-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a method based on supervised learning for the extraction of parameters in Indium Gallium Zinc Oxide Thin-Film Transistors with aluminium contacts, as an alternative regarding analytical and optimisation methods. The method consists of generating a set of I-V curves of the device of interest using Spice software. These curves are the input samples of the Artificial Neural Networks, from which it is intended to predict the different parameters such as threshold voltage, transconductance and contact resistance, from each sample curve. By generating the training set itself, it is possible to label each sample curve, which allows the type of learning to be supervised. The results show that ANNs provide parameters with which it is possible to model physical measurements with error rates of less than 5% when extracting the first two parameters, and errors of between 0.06% and 4.62%, when extracting the three parameters. In addition, a comparison was made between the results of the ANNs and the analytical extraction of parameters.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Parameter Extraction Using the Output Characteristics of Thin-Film Transistors in Weak-Conduction and Triode-Region
    Avila-Avendano, Carlos
    Ortiz-Conde, Adelmo
    Caraveo-Frescas, Jesus A.
    Quevedo-Lopez, Manuel A.
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2021, 22 (04) : 550 - 556
  • [32] Parameter identification of a tumor model using artificial neural networks
    Puskas, Melania
    Drexler, Daniel Andras
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 443 - 447
  • [33] Analytical modeling and parameter extraction of top and bottom contact structures of organic thin film transistors
    Kumar, Brijesh
    Kaushik, B. K.
    Negi, Y. S.
    Saxena, S.
    Varma, G. D.
    MICROELECTRONICS JOURNAL, 2013, 44 (09) : 736 - 743
  • [34] Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors
    Servati, P
    Striakhilev, D
    Nathan, A
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (11) : 2227 - 2235
  • [35] Precise parameter extraction technique for organic thin-film transistors operating in the linear regime
    Marinov, Ognian
    Deen, M. Jamal
    Feng, Cong
    Wu, Yiliang
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (03)
  • [36] Deep Neural Networks for Determining Subgap States of Oxide Thin-Film Transistors
    Choi, Yunyeong
    Sun, Wookyung
    Park, Jisun
    Shin, Hyungsoon
    IEEE ACCESS, 2023, 11 : 15909 - 15920
  • [37] Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks
    Kimaev, Grigoriy
    Ricardez-Sandoval, Luis A.
    CHEMICAL ENGINEERING SCIENCE, 2019, 207 : 1230 - 1245
  • [38] Evolutionary Computation for Parameter Extraction of Organic Thin-Film Transistors Using Newly Synthesized Liquid Crystalline Nickel Phthalocyanine
    Jimenez-Tejada, Juan A.
    Romero, Adrian
    Gonzalez, Jesus
    Chaure, Nandu B.
    Cammidge, Andrew N.
    Chambrier, Isabelle
    Ray, Asim K.
    Deen, M. Jamal
    MICROMACHINES, 2019, 10 (10)
  • [39] Film Colorization, Using Artificial Neural Networks and Laws Filters
    Lavvafi, Mohammad Reza
    Monadjemi, S. Amirhassan
    Moallem, Payman
    JOURNAL OF COMPUTERS, 2010, 5 (07) : 1094 - 1099
  • [40] Artificial neural networks for boundary extraction
    Lu, SW
    Shen, J
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 2270 - 2275