Federated Domain Generalization: A Secure and Robust Framework for Intelligent Fault Diagnosis

被引:16
|
作者
Zhao, Chao [1 ]
Shen, Weiming [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
federated domain generalization; Industrial Internet of Things (IIoT); rotating machine; Data privacy; deep learning; fault diagnosis; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/TII.2023.3296894
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The maturation of sensor network technologies has promoted the emergence of the Industrial Internet of Things, which has been collecting an increasing volume of monitoring data. Transforming these data into actionable intelligence for equipment fault diagnosis can reduce unscheduled downtime and performance degradation. In conventional artificial intelligence paradigms, abundant individual data distributed across clients' devices needs to be delivered to a central storage for data analysis and knowledge extraction, which may violate data privacy requirements and neglect distribution discrepancy across different clients. To tackle the issue of privacy disclosure, an edge-cloud integrated federated learning framework is developed. Then, a two-stage training mechanism is designed to establish a domain-agnostic fault diagnosis model that can achieve satisfactory diagnostic performance on unseen target domains. Comprehensive simulated experiments on two rotating machines indicate that the proposed method possesses good generalization ability and can meet the requirement of privacy protection.
引用
收藏
页码:2662 / 2670
页数:9
相关论文
共 50 条
  • [41] Meta-learning Based Domain Generalization Framework for Fault Diagnosis With Gradient Aligning and Semantic Matching
    Ren, Lei
    Mo, Tingyu
    Cheng, Xuejun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 754 - 764
  • [42] Domain fuzzy generalization networks for semi-supervised intelligent fault diagnosis under unseen working conditions
    Ren, He
    Wang, Jun
    Zhu, Zhongkui
    Shi, Juanjuan
    Huang, Weiguo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [43] Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
    Zhao, Chao
    Shen, Weiming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 189
  • [44] Intra-domain self generalization network for intelligent fault diagnosis of bearings under unseen working conditions
    Huang, Kai
    Ren, Zhijun
    Zhu, Linbo
    Lin, Tantao
    Zhu, Yongsheng
    Zeng, Li
    Wan, Jin
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [45] Natual gas pipeline fault intelligent diagnosis based on the Bayesian single-source domain generalization algorithm
    Dong, Hongli
    Shang, Rou
    Wang, Hanbo
    Wang, Chuang
    Chen, Shuangqing
    Guan, Chuang
    Natural Gas Industry, 2024, 44 (09) : 27 - 37
  • [46] SRFL: A Secure & Robust Federated Learning framework for IoT with trusted execution environments
    Cao, Yihao
    Zhang, Jianbiao
    Zhao, Yaru
    Su, Pengchong
    Huang, Haoxiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [47] ABFL: A Blockchain-enabled Robust Framework for Secure and Trustworthy Federated Learning
    Cui, Bo
    Mei, Tianyu
    39TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2023, 2023, : 636 - 646
  • [48] SRFL: A Secure & Robust Federated Learning framework for IoT with trusted execution environments
    Cao, Yihao
    Zhang, Jianbiao
    Zhao, Yaru
    Su, Pengchong
    Huang, Haoxiang
    Expert Systems with Applications, 2024, 239
  • [49] Dynamic feature separation domain generalization for bearing fault diagnosis
    Cai, Haichao
    Yang, Bo
    Xue, Yujun
    Li, Jubo
    Xu, Yanwei
    Yang, Xiaokang
    Ye, Jun
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [50] Chemical fault diagnosis network based on single domain generalization
    Guo, Yu
    Zhang, Jundong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 188 : 1133 - 1144