Bimetallic MnFe2-MOF and Its Derived MnFe2O4 Nanostructures for Supercapacitive Applications

被引:9
|
作者
Bhosale, Rakhee [1 ]
Bhosale, Sneha [1 ]
Sankannavar, Rohini [1 ]
Chavan, Vijay [2 ]
Jambhale, Chitra [1 ]
Kim, Honggyun [3 ]
Kolekar, Sanjay [1 ]
机构
[1] Shivaji Univ, Dept Chem, Analyt Chem & Mat Sci Res Lab, Kolhapur 416004, India
[2] Sejong Univ, Elect Engn & Convergence Engn Intelligent Drone, Seoul 05006, South Korea
[3] Sejong Univ, Semicond Syst Engn, Seoul 05006, South Korea
关键词
metal-organicframework; magnetic behavior; specific capacitance; cyclic stability; Coulombicefficiency; supercapacitor; ORGANIC FRAMEWORKS MOFS; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; ENERGY-STORAGE; NANOPARTICLES; ELECTRODES; EFFICIENT; DEGRADATION; FERRITES; CATALYST;
D O I
10.1021/acsanm.3c05645
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
At present, supercapacitors (SC) based on metal-organic frameworks (MOFs) have gained a lot of attention in energy storage and conversion applications because of their fascinating properties such as low densities, variable chemical functions, high surface area, and porosity. The manuscript covers the synthesis of bimetallic MOF and MOF-derived ferrites via a chemically wet route and heat treatment process, respectively. The prepared electrode material was utilized to construct the asymmetric supercapacitor devices. The MnFe2-MOF electrode exhibits outstanding electrochemical properties over the derived MnFe2O4 along with high reversibility, fast kinetics, low charge transfer resistance (2.9 Omega), and an excellent specific capacitance of 1226 F g(-1) at a current density of 1 mA cm(-2) with a superb cyclic stability of approximately 90.74% of the initial capacitance even after 5000 subsequent charge-discharge cycles. Additionally, an asymmetric device was fabricated to confirm the practical viability of MnFe2-MOF as an anode and activated carbon as a cathode. The fabricated asymmetric device demonstrates an excellent specific capacitance of 91.87 F g(-1) at a 1 mA cm(-2) current density with a specific energy of 32.67 Wh kg(-1) and a high specific power of 1000 W kg(-1). Simultaneously, the fabricated asymmetric supercapacitor (ASC) device unveils exceptional cyclic stability (85.25%) and Coulombic efficiency (96.81%) at a higher current density of 8 mA cm(-2) even after 10,000 charge-discharge cycles. These perceptible results based on MOF-derived ferrite nanostructure can make it a significant electrode material for supercapacitor application in today's technological applications.
引用
收藏
页码:4078 / 4091
页数:14
相关论文
共 50 条
  • [31] Synthesis and Characterization of Photocatalytic MnFe2O4 Nanoparticles
    Desai, Harshal B.
    Hathiya, Laxmi J.
    Joshi, Hiren H.
    Tanna, Ashish R.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 1905 - 1910
  • [32] NUCLEAR MAGNETIC RESONANCE IN FERRIMAGNETIC MNFE2O4
    HEEGER, AJ
    HOUSTON, TW
    PHYSICAL REVIEW, 1964, 135 (3A): : A661 - +
  • [33] Synthesis of MnFe2O4 nanoparticles by mechanochemical reaction
    Osmokrovic, P
    Jovalekic, C
    Manojlovic, D
    Pavlovic, MB
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (01): : 312 - 314
  • [34] Electrochemical capacitor of MnFe2O4 with NaCl electrolyte
    Kuo, SL
    Wu, NL
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (10) : A495 - A499
  • [35] Synthesis and Magnetic Properties of MnFe2O4 Nanoparticles
    Thirupathi, G.
    Saipriya, S.
    Singh, R.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 1129 - 1130
  • [36] Nanocrystalline MnFe2O4 produced by niobium doping
    Kundu, TK
    Chakravorty, D
    JOURNAL OF MATERIALS RESEARCH, 1999, 14 (10) : 3957 - 3961
  • [37] Nanocrystalline MnFe2O4 produced by niobium doping
    T. K. Kundu
    D. Chakravorty
    Journal of Materials Research, 1999, 14 : 3957 - 3961
  • [38] Superspin glass state in MnFe2O4 nanoparticles
    Aslibeiki, B.
    Kameli, P.
    Salamati, H.
    Eshraghi, M.
    Tahmasebi, T.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (19) : 2929 - 2934
  • [39] SONOCHEMICAL SYNTHESIS OF MnFe2O4 SPINEL NANOPARTICLES
    Sukhatskiy, Yu. V.
    Shepida, M. V.
    Korniy, S. A.
    MATERIALS SCIENCE, 2023, 59 (04) : 487 - 493
  • [40] In vitro meningeal permeation of MnFe2O4 nanoparticles
    Mauro, Marcella
    Crosera, Matteo
    Bovenzi, Massimo
    Adami, Gianpiero
    Baracchini, Elena
    Maina, Giovanni
    Filon, Francesca Larese
    CHEMICO-BIOLOGICAL INTERACTIONS, 2018, 293 : 48 - 54