High-performance self-desalination powered by triboelectric-electromagnetic hybrid nanogenerator

被引:9
|
作者
Dai, Jinhong [1 ]
Xia, Xin [1 ]
Zhang, Dian [2 ]
He, Shaoshuai [1 ]
Wan, Dong [1 ]
Chen, Fuming [2 ]
Zi, Yunlong [1 ,3 ,4 ]
机构
[1] Hong Kong Univ Sci & Technol Guangzhou, Thrust Sustainable Energy & Environm, Guangzhou 511400, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Elect & Informat Engn, Foshan 528225, Peoples R China
[3] Guangzhou HKUST Fok Ying Tung Res Inst, Guangzhou 511400, Guangdong, Peoples R China
[4] HKUST, Shenzhen Hong Kong Collaborat Innovat Res Inst, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Freshwater; Self; -desalination; Hydrokinetic energy; -powered; Triboelectric-electromagnetic hybrid; nanogenerator; SEAWATER DESALINATION; ENERGY; RESISTANCE; MEMBRANE; FUTURE;
D O I
10.1016/j.watres.2024.121185
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Freshwater is an essential resource in today's world, and how to produce freshwater with low or even zero power consumption is a major challenge. Here, a desalination system powered by a triboelectric-electromagnetic hybrid nanogenerator (TEHG) is presented, which can utilize the water's own energy to remove the salt ions from itself, demonstrating a new concept of "self -desalination". At a relatively low rotation speed of 150 rpm, the system can dilute NaCl brine from 4000 ppm to 145 ppm with a high salt removal rate of 147.1 mu g cm -2 min -1 and a freshwater productivity of up to 31.1 L m- 2 h-1. The actual seawater can also be treated with a total ion removal efficiency of 99.6 % and a freshwater productivity of 2.7 L m- 2 h-1, which is superior to other renewable -energy -powered desalination systems. More importantly, fully self -powered desalination process can be realized by manual cranking and hydrokinetic energy impact, both of which are capable of treating 1000 ppm salt feed to the drinking water level. The TEHG-powered desalination system not only provides excellent desalination performance but also addresses the challenges of power consumption and limited capacity, which offers a completely new paradigm of "self -desalination".
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A multilayer triboelectric-electromagnetic hybrid nanogenerator for vibration energy harvesting and frequency monitoring
    Shen, Junyao
    Yang, Yiyong
    Yang, Ze
    Li, Bo
    Ji, Linhong
    Cheng, Jia
    NANO ENERGY, 2023, 116
  • [22] Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    Yang, Jiacheng
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [23] A sliding hybrid triboelectric-electromagnetic nanogenerator with staggered electrodes for human motion posture
    Nie, Wenwen
    ENERGY REPORTS, 2022, 8 : 617 - 625
  • [24] Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator
    Wen, Zhen
    Guo, Hengyu
    Zi, Yunlong
    Yeh, Min-Hsin
    Wang, Xin
    Deng, Jianan
    Wang, Jie
    Li, Shengming
    Hu, Chenguo
    Zhu, Liping
    Wang, Zhong Lin
    ACS Nano, 2016, 10 (07) : 6526 - 6534
  • [25] Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting
    Hao, Congcong
    He, Jian
    Zhai, Cong
    Jia, Wei
    Song, Linlin
    Cho, Jundong
    Chou, Xiujian
    Xue, Chenyang
    NANO ENERGY, 2019, 58 (147-157) : 147 - 157
  • [26] A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system
    Chen, Xin
    Gao, Lingxiao
    Chen, Junfei
    Lu, Shan
    Zhou, Hong
    Wang, Tingting
    Wang, Aobo
    Zhang, Zhifei
    Guo, Shifeng
    Mu, Xiaojing
    Wang, Zhong Lin
    Yang, Ya
    NANO ENERGY, 2020, 69
  • [27] Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics
    Wang, Dongyue
    Zhang, Dongzhi
    Tang, Mingcong
    Zhang, Hao
    Chen, Fengjiao
    Wang, Tian
    Li, Zheng
    Zhao, Peipei
    Chemical Engineering Journal, 2022, 446
  • [28] Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics
    Wang, Dongyue
    Zhang, Dongzhi
    Tang, Mingcong
    Zhang, Hao
    Chen, Fengjiao
    Wang, Tian
    Li, Zheng
    Zhao, Peipei
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [29] Triboelectric-electromagnetic hybrid generator based self-powered flexible wireless sensing for food monitoring
    Meng, Wang
    Yang, Yunyue
    Zhang, Ruihua
    Wu, Zihao
    Xiao, Xinqing
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [30] Surface-Engineered High-Performance Triboelectric Nanogenerator for Self-Powered Health Monitoring and Electronics
    Potu, Supraja
    Madathil, Navaneeth
    Mishra, Siju
    Bora, Arbacheena
    Sivalingam, Yuvaraj
    Babu, Anjaly
    Velpula, Mahesh
    Bochu, Lakshakoti
    Ketharachapalli, Balaji
    Kulandaivel, Anu
    Rajaboina, Rakesh Kumar
    Khanapuram, Uday Kumar
    Divi, Haranath
    Kodali, Prakash
    Murali, Banavoth
    Ketavath, Ravi
    ACS APPLIED ENGINEERING MATERIALS, 2023, 1 (10): : 2663 - 2675