Substation rotational object detection based on multi-scale feature fusion and refinement

被引:2
|
作者
Li, Bin [1 ]
Li, Yalin [1 ]
Zhu, Xinshan [1 ]
Qu, Luyao [1 ]
Wang, Shuai [1 ]
Tian, Yangyang [2 ]
Xu, Dan [3 ]
机构
[1] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
[2] State Grid Henan Elect Power Res Inst, Zhengzhou 450000, Peoples R China
[3] XJ Grp Corp, Xuchang 461000, Peoples R China
关键词
Substation; Rotated device; Object detection; Feature fusion; Feature refinement;
D O I
10.1016/j.egyai.2023.100294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In modern energy systems, substations are the core of electricity transmission and distribution. However, similar appearance and small size pose significant challenges for automatic identification of electrical devices. To address these issues, we collect and annotate the substation rotated device dataset (SRDD). Further, feature fusion and feature refinement network (F3RNet) are constructed based on the classic structure pattern of backbone-neck-head. Considering the similar appearance of electrical devices, the deconvolution fusion module (DFM) is designed to enhance the expression of feature information. The balanced feature pyramid (BFP) is embedded to aggregate the global feature. The feature refinement is constructed to adjust the original feature maps by considering the feature alignment between the anchors and devices. It can generate more accurate feature vectors. To address the problem of sample imbalance between electrical devices, the gradient harmonized mechanism (GHM) loss is utilized to adjust the weight of each sample. The ablation experiments are conducted on the SRDD dataset. F3RNet achieves the best detection performance compared with classical object detection networks. Also, it is verified that the features from global feature maps can effectively recognize the similar and small devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [32] Feature Enhancement for Multi-scale Object Detection
    Huicheng Zheng
    Jiajie Chen
    Lvran Chen
    Ye Li
    Zhiwei Yan
    Neural Processing Letters, 2020, 51 : 1907 - 1919
  • [33] Feature Enhancement for Multi-scale Object Detection
    Zheng, Huicheng
    Chen, Jiajie
    Chen, Lvran
    Li, Ye
    Yan, Zhiwei
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1907 - 1919
  • [34] Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism
    Du, Zuoqiang
    Liang, Yuan
    IEEE ACCESS, 2024, 12 : 8619 - 8632
  • [35] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Zhang, Jie
    Qi, Qiye
    Zhang, Huanlong
    Du, Qifan
    Wang, Fengxian
    Shi, Xiaoping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40873 - 40889
  • [36] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Wu, Jingtao
    Dai, Guojun
    Zhou, Wenhui
    Zhu, Xudong
    Wang, Zengguan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [37] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Jingtao Wu
    Guojun Dai
    Wenhui Zhou
    Xudong Zhu
    Zengguan Wang
    Journal of Real-Time Image Processing, 2024, 21
  • [38] Global and Local Multi-scale Feature Fusion for Object Detection and Semantic Segmentation
    Lim, Young-Chul
    Kang, Minsung
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2557 - 2562
  • [39] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Jie Zhang
    Qiye Qi
    Huanlong Zhang
    Qifan Du
    Fengxian Wang
    Xiaoping Shi
    Multimedia Tools and Applications, 2023, 82 : 40873 - 40889
  • [40] A Single Shot Framework with Multi-Scale Feature Fusion for Geospatial Object Detection
    Zhuang, Shuo
    Wang, Ping
    Jiang, Boran
    Wang, Gang
    Wang, Cong
    REMOTE SENSING, 2019, 11 (05)