HGRec: Group Recommendation With Hypergraph Convolutional Networks

被引:4
|
作者
Wang, Nan [1 ]
Liu, Dan [1 ]
Zeng, Jin [1 ]
Mu, Lijin [1 ]
Li, Jinbao [2 ,3 ]
机构
[1] Heilongjiang Univ, Coll Comp Sci & Technol, Harbin 150080, Peoples R China
[2] Qilu Univ Technol, Shandong Artificial Intelligence Inst, Jinan 250014, Peoples R China
[3] Qilu Univ Technol, Sch Math & Stat, Jinan 250353, Peoples R China
关键词
Self-supervised learning; Task analysis; Decision making; Convolutional neural networks; Collaboration; Recommender systems; Aggregates; Contrastive learning; graph neural network; group recommendation; hypergraph convolution; user behavior modelling;
D O I
10.1109/TCSS.2024.3363843
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recommendation systems have shifted from personalization for individual users to consensus for groups as a result of people's growing tendency to join groups to participate in various everyday activities, like family meals and workplace reunions. This is because social networks have made it easier for people to participate in these kinds of events. Group recommendation is the process of suggesting items to groups. To derive group preferences, the majority of current approaches combine the individual preferences of group members utilizing heuristic or attention mechanism-based techniques. These approaches, however, have three issues. First, these approaches ignore the complex high-order interactions that occur both inside and outside of groups, just modeling the preferences of individual groups of users. Second, a group's ultimate decision is not always determined by the members' preferences. Nevertheless, current approaches are not adequate to represent such preferences across groups. Last, data sparsity affects group recommendations due to the sparsity of group-item interactions. To overcome the aforementioned constraints, we propose employing hypergraph convolutional networks for group recommendation. Specifically, our design aims to achieve excellent group preferences by establishing a high-order preference extraction view represented by the hypergraph, a consistent preference extraction view represented by the overlap graph, and a conventional preference extraction view represented by the bipartite graph. The linkages between the three various views are then established by using cross-view contrastive learning, and the information between different views can be complementary, thereby improving each other. Comprehensive experiments on three publicly available datasets show that our method performs better than the state-of-the-art baseline.
引用
收藏
页码:4214 / 4225
页数:12
相关论文
共 50 条
  • [31] Incorporating Price into Recommendation With Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1609 - 1623
  • [32] DGCN: Diversified Recommendation with Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    Chen, Liang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 401 - 412
  • [33] Selective Hypergraph Convolutional Networks for Skeleton-based Action Recognition
    Zhu, Yiran
    Huang, Guangji
    Xu, Xing
    Ji, Yanli
    Shen, Fumin
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2022, 2022, : 518 - 526
  • [34] Multi-head Attention Induced Dynamic Hypergraph Convolutional Networks
    Peng, Xu
    Lin, Wei
    Jin, Taisong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 256 - 268
  • [35] Semi-supervised Learning with Graph Convolutional Networks Based on Hypergraph
    Li, Yangding
    Wan, Yingying
    Liu, Xingyi
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2629 - 2644
  • [36] Semi-supervised Learning with Graph Convolutional Networks Based on Hypergraph
    Yangding Li
    Yingying Wan
    Xingyi Liu
    Neural Processing Letters, 2022, 54 : 2629 - 2644
  • [37] Multiplex Bipartite Network Embedding using Dual Hypergraph Convolutional Networks
    Xue, Hansheng
    Yang, Luwei
    Rajan, Vaibhav
    Jiang, Wen
    Wei, Yi
    Lin, Yu
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1649 - 1660
  • [38] Double-Scale Self-Supervised Hypergraph Learning for Group Recommendation
    Zhang, Junwei
    Gao, Min
    Yu, Junliang
    Guo, Lei
    Li, Jundong
    Yin, Hongzhi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2557 - 2567
  • [39] Face Spoof Attack Detection with Hypergraph Capsule Convolutional Neural Networks
    Liang, Yuxin
    Hong, Chaoqun
    Zhuang, Weiwei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1396 - 1402
  • [40] Group Equivariant Convolutional Networks
    Cohen, Taco S.
    Welling, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48