Amortized Variational Inference via Nose-Hoover Thermostat Hamiltonian Monte Carlo

被引:0
|
作者
Yuan, Zhan [1 ]
Xu, Chao [1 ]
Lin, Zhiwen [1 ]
Zhang, Zhenjie [1 ]
机构
[1] PLA, Unit 91977, Beijing, Peoples R China
关键词
variational inference; Hamiltonian Monte Carlo; generative model; autoencoder; neural network;
D O I
10.1007/978-981-99-8079-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sampling latents from the posterior distribution efficiently and accurately is a fundamental problem for posterior inference. Markov chainMonteCarlo (MCMC) is such a useful tool to do that but at the cost of computational burden since it needs many transition steps to converge to the stationary distribution for each datapoint. Amortized variational inference within the framework of MCMC is thus proposed where the learned parameters of the model are shared by all observations. Langevin autoencoder is a newly proposed method that amortizes inference in parameter space. This paper generalizes the Langevin autoencoder by utilizing the stochastic gradient Nose-Hoover Thermostat Hamiltonian Monte Carlo to conduct amortized updating of the parameters of the inference distribution. The proposed method improves variational inference accuracy for the latent by subtly dealingwith the noise introduced by stochastic gradient without estimating that noise explicitly. Experiments benchmarking our method against baseline generative methods highlight the effectiveness of our proposed method.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
  • [21] Nose-Hoover thermostat length effect on thermal conductivity of single wall carbon nanotubes
    Shelly, Robert A.
    Toprak, Kasim
    Bayazitoglu, Yildiz
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (25-26) : 5884 - 5887
  • [22] Modified Nose-Hoover thermostat for solid state for constant temperature molecular dynamics simulation
    Chen, Wen-Hwa
    Wu, Chun-Hung
    Cheng, Hsien-Chie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (16) : 6354 - 6366
  • [23] Variational Hamiltonian Monte Carlo via Score Matching
    Zhang, Cheng
    Shahbaba, Babak
    Zhao, Hongkai
    BAYESIAN ANALYSIS, 2018, 13 (02): : 485 - 506
  • [24] Clustering Algorithm Based on Molecular Dynamics with Nose-Hoover Thermostat. Application to Japanese Candlesticks
    Chmielewski, Leszek J.
    Janowicz, Maciej
    Orlowski, Arkadiusz
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II (ICAISC 2015), 2015, 9120 : 330 - 340
  • [25] NOSE-HOOVER CHAINS - THE CANONICAL ENSEMBLE VIA CONTINUOUS DYNAMICS
    MARTYNA, GJ
    KLEIN, ML
    TUCKERMAN, M
    JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04): : 2635 - 2643
  • [26] Thermal-Mechanical and Thermodynamic Properties of Graphene Sheets using a Modified Nose-Hoover Thermostat
    Yu, Ching-Feng
    Chen, Wen-Hwa
    Chen, Kun-Ling
    Cheng, Hsien-Chie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2013, 36 (02): : 203 - 229
  • [27] Ergodicity range of Nose-Hoover thermostat parameters and entropy-related properties of model water systems
    Kuznetsova, Tatyana
    Kvamme, BjOrn
    Molecular Simulation, 21 (04): : 205 - 225
  • [28] The Nose-Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics
    Coughtrie, David J.
    Tew, David P.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (19):
  • [29] Analysis of energy and friction coefficient fluctuations of a Lennard-Jones liquid coupled to the Nose-Hoover thermostat
    Valenzuela, G. E.
    Saavedra, J. H.
    Rozas, R. E.
    Toledo, P. G.
    MOLECULAR SIMULATION, 2015, 41 (07) : 521 - 530
  • [30] Ergodicity range of Nose-Hoover thermostat parameters and entropy-related properties of model water systems
    Kuznetsova, Tatyana
    Kvamme, Bjmrn
    MOLECULAR SIMULATION, 1999, 21 (04) : 205 - 225