Amortized Variational Inference via Nose-Hoover Thermostat Hamiltonian Monte Carlo

被引:0
|
作者
Yuan, Zhan [1 ]
Xu, Chao [1 ]
Lin, Zhiwen [1 ]
Zhang, Zhenjie [1 ]
机构
[1] PLA, Unit 91977, Beijing, Peoples R China
关键词
variational inference; Hamiltonian Monte Carlo; generative model; autoencoder; neural network;
D O I
10.1007/978-981-99-8079-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sampling latents from the posterior distribution efficiently and accurately is a fundamental problem for posterior inference. Markov chainMonteCarlo (MCMC) is such a useful tool to do that but at the cost of computational burden since it needs many transition steps to converge to the stationary distribution for each datapoint. Amortized variational inference within the framework of MCMC is thus proposed where the learned parameters of the model are shared by all observations. Langevin autoencoder is a newly proposed method that amortizes inference in parameter space. This paper generalizes the Langevin autoencoder by utilizing the stochastic gradient Nose-Hoover Thermostat Hamiltonian Monte Carlo to conduct amortized updating of the parameters of the inference distribution. The proposed method improves variational inference accuracy for the latent by subtly dealingwith the noise introduced by stochastic gradient without estimating that noise explicitly. Experiments benchmarking our method against baseline generative methods highlight the effectiveness of our proposed method.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
  • [1] THE NOSE-HOOVER THERMOSTAT
    EVANS, DJ
    HOLIAN, BL
    JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08): : 4069 - 4074
  • [2] A configurational temperature Nose-Hoover thermostat
    Braga, C
    Travis, KP
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (13):
  • [3] A METROPOLIS ADJUSTED NOSE-HOOVER THERMOSTAT
    Leimkuhler, Benedict
    Reich, Sebastian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 743 - 755
  • [4] On the configurational temperature Nose-Hoover thermostat
    Beckedahl, Derrick
    Obaga, Emmanuel O.
    Uken, Daniel A.
    Sergi, Alessandro
    Ferrario, Mauro
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 19 - 35
  • [5] Solving the Nose-Hoover thermostat for nuclear pasta
    Perez Garcia, M. Angeles
    Century of Relativity Physics, 2006, 841 : 558 - 561
  • [6] Ergodicity of a thermostat family of the Nose-Hoover type
    Watanabe, Hiroshi
    Kobayashi, Hiroto
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [7] The Nose-Hoover thermostat in molecular dynamics for nuclear matter
    Perez Garcia, M. Angeles
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (01) : 63 - 69
  • [8] Nose-Hoover dynamics of a nonintegrable Hamiltonian system
    Tiwari, S
    Ramaswamy, R
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1996, 361 : 111 - 116
  • [9] EXPONENTIAL RELAXATION OF THE NOSE-HOOVER THERMOSTAT UNDER BROWNIAN HEATING
    Herzog, David P.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (08) : 2231 - 2260
  • [10] Reformulation of the Nose-Hoover thermostat for heat conduction simulation at nanoscale
    Li, Jiaoyan
    Lee, James D.
    ACTA MECHANICA, 2014, 225 (4-5) : 1223 - 1233