Physics-Guided Multi-Agent Deep Reinforcement Learning for Robust Active Voltage Control in Electrical Distribution Systems

被引:4
|
作者
Chen, Pengcheng [1 ]
Liu, Shichao [1 ]
Wang, Xiaozhe [2 ]
Kamwa, Innocent [3 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
[3] Laval Univ, Dept Elect & Comp Sci Engn, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Distribution networks; Voltage fluctuations; active voltage control; multi-agent deep reinforcement learning; multi-agent adversarial learning; static var compensators; INTERFEROMETRIC RECEIVER; FRONT-END; POWER; MULTIFUNCTION; CALIBRATION; STANDARD; ANTENNA; DESIGN; GHZ;
D O I
10.1109/TCSI.2023.3340691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although several multi-agent deep reinforcement learning (MADRL) algorithms have been employed in power distribution networks configured with high penetration level of Photovoltaic (PV) generators for active voltage control (AVC), the impact of the voltage fluctuation of a single PV node on voltage violations of other PV nodes in the network is ignored. Consequently, it leads to the conservativeness of the existing MADRL based AVC algorithms. In this paper, a robust MADRL control algorithm is designed to minimize the nodal voltage violation and line loss with the exploration of coupling voltage fluctuations across all the controlled nodes by coordinating PV inverters, and a physics factor is utilized to guide (physics-guided) the training policy with the expectation of a better performance compared to existing purely data-driven methods. In the proposed physics-guided multi-agent adversarial twin delayed deep deterministic (PG-MA2TD3) policy gradient algorithm, a physics factor, global sensitivity of voltage (GSV), is properly embedded in the algorithm to measure the influence of the nodal voltage fluctuation on voltage violations on the other controlled nodes with PV inverters and this GSV is shared in the learning center to guide the centralized learning and decentralized execution process. The multi-agent adversarial learning (MAAL) embedded with the GSV to seek an adaptive descend gradient for reducing the Q-value function appropriately rather than always assuming the worst case. Therefore, this physics-guided method can reduce the conservation and provide significantly better reward. Finally, the proposed algorithm is compared with several other methods on IEEE 33-bus, 141-bus and 322-bus with three-year data in Portuguese and the results indicate the proposed method can obtain the minimal voltage fluctuation and the best reward in the comparisons.
引用
收藏
页码:922 / 933
页数:12
相关论文
共 50 条
  • [41] Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings
    Yu, Liang
    Sun, Yi
    Xu, Zhanbo
    Shen, Chao
    Yue, Dong
    Jiang, Tao
    Guan, Xiaohong
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) : 407 - 419
  • [42] PowerNet: Multi-Agent Deep Reinforcement Learning for Scalable Powergrid Control
    Chen, Dong
    Chen, Kaian
    Li, Zhaojian
    Chu, Tianshu
    Yao, Rui
    Qiu, Feng
    Lin, Kaixiang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1007 - 1017
  • [43] Deep Reinforcement Learning for Multi-Agent Power Control in Heterogeneous Networks
    Zhang, Lin
    Liang, Ying-Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2551 - 2564
  • [44] Decentralized Multi-agent Formation Control via Deep Reinforcement Learning
    Gutpa, Aniket
    Nallanthighal, Raghava
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2021, : 289 - 295
  • [45] Multi-agent behavioral control system using deep reinforcement learning
    Ngoc Duy Nguyen
    Thanh Nguyen
    Nahavandi, Saeid
    NEUROCOMPUTING, 2019, 359 : 58 - 68
  • [46] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [47] A Data-Driven Multi-Agent Autonomous Voltage Control Framework Using Deep Reinforcement Learning
    Wang, Shengyi
    Duan, Jiajun
    Shi, Di
    Xu, Chunlei
    Li, Haifeng
    Diao, Ruisheng
    Wang, Zhiwei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (06) : 4644 - 4654
  • [48] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [49] Multi-agent deep reinforcement learning for mitigation of unbalanced active powers using distributed batteries in low voltage residential distribution system
    Pinthurat, Watcharakorn
    Hredzak, Branislav
    ELECTRIC POWER SYSTEMS RESEARCH, 2025, 245
  • [50] Decentralized Graphical-Representation-Enabled Multi-Agent Deep Reinforcement Learning for Robust Control of Cyber-Physical Systems
    Cao, Di
    Hu, Jiaxiang
    Liu, Yu
    Hu, Weihao
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (04) : 1710 - 1720