Group-like small cancellation theory for rings

被引:0
|
作者
Atkarskaya, A. [1 ,2 ]
Kanel-Belov, A. [1 ,3 ,4 ]
Plotkin, E. [1 ]
Rips, E. [2 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
[2] Hebrew Univ Jerusalem, Dept Math, IL-9190401 Jerusalem, Israel
[3] Moscow Inst Phys & Technol, Dept Discrete Math, Dolgoprudnyi Inst Pereulok, Dolgoprudnyi 141700, Moscow Oblast, Russia
[4] Shenzhen Univ, Coll Math & Stat, Shenzhen 518061, Peoples R China
基金
以色列科学基金会; 俄罗斯科学基金会;
关键词
Small cancellation ring; turn; multi-turn; defining relations in rings; small cancellation group; group algebra; filtration; tensor products; Dehn's algorithm; greedy algorithm; Grobner basis; NIL;
D O I
10.1142/S0218196723500522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three axioms for the corresponding defining relations. We show that the obtained ring is non-trivial. Moreover, we show that this ring enjoys a global filtration that agrees with relations, find a basis of the ring as a linear space and establish the corresponding structure theorems. We also provide a revision of a concept of Grobner basis for our rings and establish a greedy algorithm for the Ideal Membership Problem.
引用
收藏
页码:1269 / 1487
页数:219
相关论文
共 50 条
  • [21] ABSTRACT ALGEBRAS WITH A SINGLE OPERATION AND GROUP-LIKE AXIOMS
    ALLEN, DJ
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (02): : 186 - &
  • [22] Axiomatic Definition of Small Cancellation Rings
    A. Atkarskaya
    A. Kanel-Belov
    E. Plotkin
    E. Rips
    Doklady Mathematics, 2021, 104 : 234 - 239
  • [23] Axiomatic Definition of Small Cancellation Rings
    Atkarskaya, A.
    Kanel-Belov, A.
    Plotkin, E.
    Rips, E.
    DOKLADY MATHEMATICS, 2021, 104 (02) : 234 - 239
  • [24] Integrals in Left Coideal Subalgebras and Group-Like Projections
    Chirvasitu, Alexandru
    Kasprzak, Pawel
    Szulim, Piotr
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (04) : 1499 - 1522
  • [25] Introducing Group-Like Uninorms-Construction and Characterization
    Jenei, Sandor
    COMPUTATIONAL INTELLIGENCE AND MATHEMATICS FOR TACKLING COMPLEX PROBLEMS, 2020, 819 : 51 - 57
  • [26] Polcag Spaces: I. Group-Like Structures
    Polat, Kadirhan
    Cagman, Abdullah
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (01): : 87 - 92
  • [27] On the spin bias of satellite galaxies in the local group-like environment
    Lee, Jounghun
    Lemson, Gerard
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (05):
  • [28] Salamander lemma for non-abelian group-like structures
    Goswami, Amartya
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (02)
  • [30] Stably free cancellation for abelian group rings
    Johnson, F. E. A.
    ARCHIV DER MATHEMATIK, 2014, 102 (01) : 7 - 10