Trautman Problem and its Solution for Plane Waves in Riemann and Riemann-Cartan Spaces

被引:0
|
作者
Babourova, O. V. [1 ]
Frolov, B. N. [2 ]
Khetczeva, M. S. [2 ]
Kushnir, D. V. [2 ]
机构
[1] Moscow Automobile & Rd Construct State Tech Univ M, Dept Phys, Leningradsky pr,64, Moscow 125319, Russia
[2] Moscow Pedag State Univ MSPU, Inst Phys Technol & Informat Syst, Dept Theoret Phys, M Pirogovskaya st 29-7, Moscow 119435, Russia
来源
GRAVITATION & COSMOLOGY | 2023年 / 29卷 / 02期
关键词
GRAVITATIONAL WAVES; TORSION WAVES;
D O I
10.1134/S0202289323020044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Trautman problem determines the conditions under which GWs transfer the information contained in them in an invariant manner. According to the analogy between plane gravitational and electromagnetic waves, the metric tensor of a plane gravitational wave is invariant under the five-dimensional group G(5), which does not change the null hypersurface of the plane wave front. The theorems are proven on the equality to zero for the result of the action of the Lie derivative on the curvature 2-form of a plane GW in Riemann and Riemann-Cartan spaces in the direction determined by the vector generating the group G(5). Thus the curvature tensor of a plane gravitational wave can invariantly transfer the information encoded in the source of the GW.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 50 条
  • [11] ON THE MAXWELL EQUATIONS IN A RIEMANN-CARTAN SPACE
    DESABBATA, V
    GASPERINI, M
    PHYSICS LETTERS A, 1980, 77 (05) : 300 - 302
  • [12] GEOMETRIC OPTICS IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 98 (8-9) : 411 - 413
  • [13] Groups of automorphisms of Riemann-Cartan structures
    Pan’zhenskii V.I.
    Journal of Mathematical Sciences, 2015, 207 (4) : 538 - 543
  • [14] Test membranes in Riemann-Cartan spacetimes
    Vasilic, Milovan
    Vojinovic, Marko
    PHYSICAL REVIEW D, 2010, 81 (02):
  • [15] COSMIC STRINGS IN RIEMANN-CARTAN SPACETIMES
    BAKER, WM
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (05) : 717 - 730
  • [16] Braneworld remarks in Riemann-Cartan manifolds
    da Silva, J. M. Hoff
    da Rocha, R.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (05)
  • [17] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [18] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [19] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10
  • [20] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468