Improving portable low-field MRI image quality through image-to-image translation using paired low- and high-field images

被引:12
|
作者
Islam, Kh Tohidul [1 ]
Zhong, Shenjun [1 ,5 ]
Zakavi, Parisa [1 ]
Chen, Zhifeng [1 ,2 ]
Kavnoudias, Helen [3 ,4 ]
Farquharson, Shawna [5 ]
Durbridge, Gail [6 ]
Barth, Markus [7 ,8 ]
McMahon, Katie L. [9 ]
Parizel, Paul M. [10 ,11 ]
Dwyer, Andrew [12 ]
Egan, Gary F. [1 ]
Law, Meng [3 ,4 ]
Chen, Zhaolin [1 ,2 ]
机构
[1] Monash Univ, Monash Biomed Imaging, Melbourne, Vic, Australia
[2] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic, Australia
[3] Monash Univ, Cent Clin Sch, Dept Neurosci, Melbourne, Vic, Australia
[4] Alfred Hosp, Dept Radiol, Melbourne, Vic, Australia
[5] Australian Natl Imaging Facil, Brisbane, Qld, Australia
[6] Queensland Univ Technol, Herston Imaging Res Facil, Brisbane, Qld, Australia
[7] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
[8] Univ Queensland, Ctr Adv Imaging, Brisbane, Qld, Australia
[9] Queensland Univ Technol, Sch Clin Sci, Herston Imaging Res Facil, Brisbane, Qld, Australia
[10] Royal Perth Hosp, David Hartley Chair Radiol, Dept Radiol, Perth, WA, Australia
[11] Univ Western Australia, Med Sch, Perth, WA, Australia
[12] South Australian Hlth & Med Res Inst, Adelaide, SA, Australia
关键词
D O I
10.1038/s41598-023-48438-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low-field portable magnetic resonance imaging (MRI) scanners are more accessible, cost-effective, sustainable with lower carbon emissions than superconducting high-field MRI scanners. However, the images produced have relatively poor image quality, lower signal-to-noise ratio, and limited spatial resolution. This study develops and investigates an image-to-image translation deep learning model, LoHiResGAN, to enhance the quality of low-field (64mT) MRI scans and generate synthetic high-field (3T) MRI scans. We employed a paired dataset comprising T1- and T2-weighted MRI sequences from the 64mT and 3T and compared the performance of the LoHiResGAN model with other state-of-the-art models, including GANs, CycleGAN, U-Net, and cGAN. Our proposed method demonstrates superior performance in terms of image quality metrics, such as normalized root-mean-squared error, structural similarity index measure, peak signal-to-noise ratio, and perception-based image quality evaluator. Additionally, we evaluated the accuracy of brain morphometry measurements for 33 brain regions across the original 3T, 64mT, and synthetic 3T images. The results indicate that the synthetic 3T images created using our proposed LoHiResGAN model significantly improve the image quality of low-field MRI data compared to other methods (GANs, CycleGAN, U-Net, cGAN) and provide more consistent brain morphometry measurements across various brain regions in reference to 3T. Synthetic images generated by our method demonstrated high quality both quantitatively and qualitatively. However, additional research, involving diverse datasets and clinical validation, is necessary to fully understand its applicability for clinical diagnostics, especially in settings where high-field MRI scanners are less accessible.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Carpal tunnel syndrome due to a tophus: Low-field magnetic resonance image
    Ruiz Montesino, Maria Dolores
    Mendoza Mendoza, Dolores
    REUMATOLOGIA CLINICA, 2019, 15 (06): : E149 - E150
  • [32] Grading lumbar disc degeneration: a comparison between low- and high-field MRI
    Hansen, Bjarke B.
    Ciochon, Urszula M.
    Trampedach, Charlotte R.
    Christensen, Anders F.
    Rasti, Zoreh
    Boesen, Mikael
    ACTA RADIOLOGICA, 2019, 60 (12) : 1636 - 1642
  • [33] IMPROVING REAL-TIME NEAR-INFRARED FACE ALIGNMENT WITH A PAIRED VIS-NIR DATASET AND DATA AUGMENTATION THROUGH IMAGE-TO-IMAGE TRANSLATION
    Miao, Langning
    Kakimoto, Ryo
    Ohishi, Kaoru
    Watanabe, Yoshihiro
    2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2024, : 2368 - 2374
  • [34] Evaluation of epilepsy lesion visualisation enhancement in low-field MRI using image quality transfer: a preliminary investigation of clinical potential for applications in developing countries
    Figini, Matteo
    Lin, Hongxiang
    D'Arco, Felice
    Ogbole, Godwin
    Rossi-Espagnet, Maria Camilla
    Oyinloye, Olalekan Ibukun
    Yaria, Joseph
    Nzeh, Donald Amasike
    Atalabi, Mojisola Omolola
    Carmichael, David W.
    Cross, Judith Helen
    Lagunju, Ikeoluwa
    Fernandez-Reyes, Delmiro
    Alexander, Daniel C.
    NEURORADIOLOGY, 2024, 66 (12) : 2243 - 2252
  • [35] RESOLUTION OF FERRIMAGNETIC AND PARAMAGNETIC ANISOTROPIES IN ROCKS, USING COMBINED LOW-FIELD AND HIGH-FIELD MEASUREMENTS
    HROUDA, F
    JELINEK, V
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1990, 103 (01) : 75 - 84
  • [36] Future of Neurology & Technology: Neuroimaging Made Accessible Using Low-Field, Portable MRI
    Parasuram, Nethra R.
    Crawford, Anna L.
    Mazurek, Mercy H.
    Chavva, Isha R.
    Beekman, Rachel
    Gilmore, Emily J.
    Petersen, Nils H.
    Payabvash, Seyedmehdi
    Sze, Gordon
    Iglesias, Juan Eugenio
    Omay, Sacit B.
    Matouk, Charles
    Longbrake, Erin E.
    de Havenon, Adam
    Schiff, Steven J.
    Rosen, Matthew S.
    Kimberly, W. Taylor
    Sheth, Kevin N.
    NEUROLOGY, 2023, 100 (22) : 1067 - 1071
  • [37] Deep learning-based single image super-resolution for low-field MR brain images
    den Bouter, M. L. de Leeuw
    Ippolito, G.
    O'Reilly, T. P. A.
    Remis, R. F.
    van Gijzen, M. B.
    Webb, A. G.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Deep learning-based single image super-resolution for low-field MR brain images
    M. L. de Leeuw den Bouter
    G. Ippolito
    T. P. A. O’Reilly
    R. F. Remis
    M. B. van Gijzen
    A. G. Webb
    Scientific Reports, 12
  • [39] Evaluation of low-field versus high-field proton NMR spectroscopy for quality control of cinnamon samples
    Wu, Nao
    Balayssac, Stephane
    Assemat, Gaetan
    Danoun, Saida
    Dejean, Sebastien
    Malet-Martino, Myriam
    Gilard, Veronique
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2021, 96
  • [40] Photographic Emulsion Materials for High Quality Low Magnification and Large Field Image Recording
    Masaru, Katoh
    Katuhisa, Yonehara
    Chusei, Turuta
    Microscopy, 1981, 30 (01) : 81 - 84