RECONSTRUCT INFRARED SEA SURFACE TEMPERATURE DATA BASED ON AN IMPROVED DINCAE METHOD

被引:1
|
作者
Li, Jiang [1 ]
Sun, Weifu [2 ]
Zhang, Jie [1 ,2 ]
机构
[1] China Univ Petr, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 1, Qingdao 266061, Peoples R China
关键词
DINCAE; T-DINCAE; SST; data reconstruction;
D O I
10.1109/IGARSS52108.2023.10281656
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Radiometers working in the infrared bands are easily affected by factors such as clouds and sea fog, which limits the spatial coverage of sea surface temperature (SST) data observed by remote sensing and affects the application of SST remote sensing data products. Data Interpolation Convolutional Auto-Encoder (DINCAE) is a data reconstruction method based on deep learning that extracts nonlinear relationships in data through a convolutional auto-encoder structure and reconstructs missing data using valid points available in the data. On the basis of DINCAE, we added the convolutional LSTM (ConvLSTM) to fully extract the time features in the data and improved the DINCAE method (T-DINCAE). The reconstruction error is calculated through cross validation and Argo buoy data. The results show that T-DINCAE has higher data reconstruction quality than DINCAE.
引用
收藏
页码:4120 / 4123
页数:4
相关论文
共 50 条
  • [31] Sea surface temperature estimation using infrared radiometry
    Niclòs, R
    Caselles, V
    PROCEEDINGS OF THE FIRST RESULTS WORKSHOP ON EUROSTARRS, WISE, LOSAC CAMPAIGNS, 2003, 525 : 81 - 88
  • [32] THE DATA FORMAT TRANSFORMATION OF SEA SURFACE TEMPERATURE DATA
    Zhao, Lingli
    Zhang, Jianmei
    Li, Junsheng
    Liu, Shuai
    2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE), 2012, : 636 - 639
  • [33] Data fusion of sea-surface temperature data
    Fieguth, PW
    Khellah, FM
    Murray, MJ
    Allen, MR
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2111 - 2113
  • [34] A new global gridded sea surface temperature data product based on multisource data
    Cao, Mengmeng
    Mao, Kebiao
    Yan, Yibo
    Shi, Jiancheng
    Wang, Han
    Xu, Tongren
    Fang, Shu
    Yuan, Zijin
    EARTH SYSTEM SCIENCE DATA, 2021, 13 (05) : 2111 - 2134
  • [35] A Bispectral Approach for Destriping and Denoising the Sea Surface Temperature from SGLI Thermal Infrared Data
    Kurihara, Yukio
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2023, 40 (02) : 161 - 173
  • [36] A Novel Method for Sea Surface Temperature Prediction Based on Deep Learning
    Yu, Xuan
    Shi, Suixiang
    Xu, Lingyu
    Liu, Yaya
    Miao, Qingsheng
    Sun, Miao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [37] AN IMPROVED ICE/SNOW SURFACE TEMPERATURE RETRIEVAL METHOD FOR ANTARCTIC MODIS DATA
    Liu, Tingting
    Wang, Zemin
    Liu, Jian
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5208 - 5211
  • [38] Sparse Data-Extended Fusion Method for Sea Surface Temperature Prediction on the East China Sea
    Wang, Xiaoliang
    Wang, Lei
    Zhang, Zhiwei
    Chen, Kuo
    Jin, Yingying
    Yan, Yijun
    Liu, Jingjing
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [39] A new global gridded sea surface temperature product constructed from infrared and microwave radiometer data using the optimum interpolation method
    SUN Weifu
    WANG Jin
    ZHANG Jie
    MA Yi
    MENG Junmin
    YANG Lei
    MIAO Junwei
    Acta Oceanologica Sinica, 2018, 37 (09) : 41 - 49
  • [40] A new global gridded sea surface temperature product constructed from infrared and microwave radiometer data using the optimum interpolation method
    Weifu Sun
    Jin Wang
    Jie Zhang
    Yi Ma
    Junmin Meng
    Lei Yang
    Junwei Miao
    Acta Oceanologica Sinica, 2018, 37 : 41 - 49