The potential and pitfalls of artificial intelligence in clinical pharmacology

被引:14
|
作者
Johnson, Martin [1 ]
Patel, Mishal [2 ]
Phipps, Alex [1 ]
Van der Schaar, Mihaela [3 ,4 ]
Boulton, Dave [5 ]
Gibbs, Megan [5 ]
机构
[1] AstraZeneca, Clin Pharmacol & Quantitat Pharmacol, Clin Pharmacol & Safety Sci, R&D, Cambridge, England
[2] AstraZeneca, Clin Pharmacol & Quantitat Pharmacol, Artificial Intelligence & Data Analyt, R&D, Cambridge, England
[3] Univ Cambridge, Cambridge Ctr Artificial Intelligence Med, Dept Appl Math & Theoret Phys, Cambridge, England
[4] Univ Cambridge, Dept Populat Hlth, Cambridge, England
[5] AstraZeneca, Clin Pharmacol & Quantitat Pharmacol, Clin Pharmacol & Safety Sci, R&D, 1 Medimmune Way, Gaithersburg, MD 20878 USA
来源
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY | 2023年 / 12卷 / 03期
关键词
D O I
10.1002/psp4.12902
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Artificial intelligence (AI) involves using data and algorithms to perform activities normally achieved through human intelligence. AI and its key component machine learning contextualize data and enhance decision making to transform how we operate, discover, and develop drugs. Transforming clinical pharmacology (CP) as AI-augmented CP (AI/CP) requires an ecosystem including digitized data collection, standardized processes, complementary technologies, and an ethical framework. This commentary aims to highlight the future perspectives of AI/CP in drug development.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 50 条
  • [21] Artificial Intelligence/Machine Learning: The New Frontier of Clinical Pharmacology and Precision Medicine
    Liu, Qi
    Joshi, Amita
    Standing, Joseph F.
    van Der Graaf, Piet H.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 115 (04) : 637 - 642
  • [22] Potential and Pitfalls of ChatGPT and Natural-Language Artificial Intelligence Models for Diabetes Education
    Sng, Gerald Gui Ren
    Tung, Joshua Yi Min
    Lim, Daniel Yan Zheng
    Bee, Yong Mong
    DIABETES CARE, 2023, 46 (05) : E103 - E105
  • [23] Artificial intelligence in Ultrasound: Pearls and pitfalls in 2024
    Stefanini, Bernardo
    Giamperoli, Alice
    Terzi, Eleonora
    Piscaglia, Fabio
    ULTRASCHALL IN DER MEDIZIN, 2024,
  • [24] Pitfalls in Interpretive Applications of Artificial Intelligence in Radiology
    Behzad, Shima
    Tabatabaei, Seyed M. Hossein
    Lu, Max Y.
    Eibschutz, Liesl S.
    Gholamrezanezhad, Ali
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2024, 223 (04)
  • [25] Artificial intelligence using electrocardiography: strengths and pitfalls
    Kwon, Joon-myoung
    Jo, Yong-Yeon
    Lee, Soo Youn
    Kim, Kyung-Hee
    EUROPEAN HEART JOURNAL, 2021, 42 (30) : 2896 - 2898
  • [26] Artificial intelligence in nursing education: Prospects and pitfalls
    Le Lagadec, Danielle
    Jackson, Debra
    Cleary, Michelle
    JOURNAL OF ADVANCED NURSING, 2024, 80 (10) : 3883 - 3885
  • [27] Artificial intelligence for geographic atrophy: pearls and pitfalls
    Enzendorfer, Marie Louise
    Schmidt-Erfurth, Ursula
    CURRENT OPINION IN OPHTHALMOLOGY, 2024, 35 (06) : 455 - 462
  • [28] Opportunities and challenges in application of artificial intelligence in pharmacology
    Kumar, Mandeep
    Nguyen, T. P. Nhung
    Kaur, Jasleen
    Singh, Thakur Gurjeet
    Soni, Divya
    Singh, Randhir
    Kumar, Puneet
    PHARMACOLOGICAL REPORTS, 2023, 75 (01) : 3 - 18
  • [29] A comprehensive review of artificial intelligence for pharmacology research
    Li, Bing
    Tan, Kan
    Lao, Angelyn R.
    Wang, Haiying
    Zheng, Huiru
    Zhang, Le
    FRONTIERS IN GENETICS, 2024, 15
  • [30] Quantitative systems pharmacology in the age of artificial intelligence
    Ribba, Benjamin
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2023, 12 (12): : 1823 - 1826