Photovoltaic Power Forecasting Using Multiscale-Model-Based Machine Learning Techniques

被引:3
|
作者
Marweni, Manel [1 ]
Hajji, Mansour [2 ]
Mansouri, Majdi [3 ]
Mimouni, Mohamed Fouazi [1 ]
机构
[1] Univ Monastir, Natl Engn Sch Monastir, Lab Automat Elect Syst & Environm, Monastir 5000, Tunisia
[2] Kairouan Univ, Higher Inst Appl Sci & Technol Kasserine, Res Unit Adv Mat & Nanotechnol, Kasserine 1200, Tunisia
[3] Texas A&M Univ Qatar, Elect & Comp Engn Program, Doha, Qatar
关键词
photovoltaic (PV); energy management (EM); forecasting; stand-alone PV system; REGRESSION;
D O I
10.3390/en16124696
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The majority of energy sources being used today are traditional types. These sources are limited in nature and quantity. Additionally, they are continuously diminishing as global energy consumption increases as a result of population growth and industrial expansion. Their compensation is made from clean energy and renewable energy. Renewable energy is strongly dependent on climatic conditions; therefore, an aspect of energy management is needed, which is essential in distribution systems, because it enables us to calculate the precise energy used by the load as well as by its many components. It also helps us understand how much energy is required and its origin. The energy management aspect contains two main phases: forecasting and optimization. In this study, we are focused on the forecasting level using intelligent machine learning (ML) techniques. To ensure better energy management, it is very important to predict the production of renewable energy over a wide time period. In our work, several cases are proposed in order to predict the temperature, the irradiance, and the power produced by a PV system. The proposed approach is validated by an experimental procedure and a real database for a PV system. The big data from the sensors are noisy, which pose a major problem for forecasting. To reduce the impact of noise, we applied the multiscale strategy. To evaluate this strategy, we used different performance criteria, such as mean error (ME), mean absolute error (MAE), root mean square error (RMSE), nRMSE and the coefficient of determination (R2). The obtained experimental results show good performance with lower error. Indeed, they achieved an error for nRMSE criteria between 0.01 and 0.37.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] PV-Power Forecasting using Machine Learning Techniques
    Al Arafat, Kazi Abdullah
    Creer, Kode
    Debnath, Anjan
    Olowu, Temitayo O.
    Parvez, Imtiaz
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 480 - 484
  • [12] PV-Power Forecasting using Machine Learning Techniques
    Al Arafat, Kazi Abdullah
    Creer, Kode
    Debnath, Anjan
    Olowu, Temitayo O.
    Parvez, Imtiaz
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 280 - 284
  • [13] Solar photovoltaic power output forecasting using machine learning technique
    Van Tai, Dinh
    V INTERNATIONAL CONFERENCE ON INNOVATIONS IN NON-DESTRUCTIVE TESTING (SIBTEST 2019), 2019, 1327
  • [14] Power system state forecasting using machine learning techniques
    Mukherjee, Debottam
    Chakraborty, Samrat
    Ghosh, Sandip
    ELECTRICAL ENGINEERING, 2022, 104 (01) : 283 - 305
  • [15] Forecasting of Photovoltaic Power using Regularized Ensemble Extreme Learning Machine
    Teo, T. T.
    Logenthiran, T.
    Woo, W. L.
    Abidi, K.
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 455 - 458
  • [16] Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning
    Borunda, Monica
    Ramirez, Adrian
    Garduno, Raul
    Ruiz, Gerardo
    Hernandez, Sergio
    Jaramillo, O. A.
    ENERGIES, 2022, 15 (23)
  • [17] Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison
    Gaboitaolelwe, Jwaone
    Zungeru, Adamu Murtala
    Yahya, Abid
    Lebekwe, Caspar K.
    Vinod, Dasari Naga
    Salau, Ayodeji Olalekan
    IEEE ACCESS, 2023, 11 : 40820 - 40845
  • [18] Extreme Learning Machine-Based Power Forecasting in Photovoltaic Systems
    Duranay, Zeynep Bala
    IEEE ACCESS, 2023, 11 : 128923 - 128931
  • [19] Machine Learning Algorithms in Forecasting of Photovoltaic Power Generation
    Su, Di
    Batzelis, Efstratios
    Pal, Bikash
    2019 2ND INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST 2019), 2019,
  • [20] Trends and gaps in photovoltaic power forecasting with machine learning
    Alcaniz, Alba
    Grzebyk, Daniel
    Ziar, Hesan
    Isabella, Olindo
    ENERGY REPORTS, 2023, 9 : 447 - 471