An Efficient Two-Stage Network Intrusion Detection System in the Internet of Things

被引:9
|
作者
Zhang, Hongpo [1 ,2 ]
Zhang, Bo [1 ]
Huang, Lulu [2 ]
Zhang, Zhaozhe [1 ]
Huang, Haizhaoyang [1 ]
机构
[1] Zhengzhou Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Cooperat Innovat Ctr Internet Healthcare, Zhengzhou 450001, Peoples R China
关键词
internet of things; network intrusion detection; convolutional neural network; class imbalance; LightGBM; NEURAL-NETWORK; IOT;
D O I
10.3390/info14020077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Things (IoT) devices and services provide convenience but face serious security threats. The network intrusion detection system is vital in ensuring the security of the IoT environment. In the IoT environment, we propose a novel two-stage intrusion detection model that combines machine learning and deep learning to deal with the class imbalance of network traffic data and achieve fine-grained intrusion detection on large-scale flow data. The superiority of the model is verified on the newer and larger CSE-CIC-IDS2018 dataset. In Stage-1, the LightGBM algorithm recognizes normal and abnormal network traffic data and compares six classic machine learning techniques. In Stage-2, the Convolutional Neural Network (CNN) performs fine-grained attack class detection on the samples predicted to be abnormal in Stage-1. The Stage-2 multiclass classification achieves a detection rate of 99.896%, F1score of 99.862%, and an MCC of 95.922%. The total training time of the two-stage model is 74.876 s. The detection time of a sample is 0.0172 milliseconds. Moreover, we set up an optional Synthetic Minority Over-sampling Technique based on the imbalance ratio (IR-SMOTE) of the dataset in Stage-2. Experimental results show that, compared with SMOTE technology, the two-stage intrusion detection model can adapt to imbalanced datasets well and reveal higher efficiency and better performance when processing large-scale flow data, outperforming state-of-the-art intrusion detection systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Machine Learning Based Two-Stage Wi-Fi Network Intrusion Detection System
    Reyes, Abel A.
    Vaca, Francisco D.
    Aguayo, Gabriel A. Castro
    Niyaz, Quamar
    Devabhaktuni, Vijay
    ELECTRONICS, 2020, 9 (10) : 1 - 18
  • [22] Machine Learning Based Network Intrusion Detection System for Internet of Things Cybersecurity
    Molcer, Piroska Stanic
    Pejic, Aleksandar
    Gulaci, Kristian
    Szalma, Reka
    SECURITY-RELATED ADVANCED TECHNOLOGIES IN CRITICAL INFRASTRUCTURE PROTECTION: THEORETICAL AND PRACTICAL APPROACH, 2022, : 95 - 110
  • [23] Hybrid Network Intrusion Detection System for Smart Environments Based on Internet of Things
    Subbarayalu, Venkatraman
    Surendiran, B.
    Kumar, P. Arun Raj
    COMPUTER JOURNAL, 2019, 62 (12): : 1822 - 1839
  • [24] A two-stage hybrid model for intrusion detection
    Krishnamoorthi
    Reddy, N. V. Subba
    Acharya, U. Dinesh
    2006 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATIONS, VOLS 1 AND 2, 2007, : 158 - 160
  • [25] MARNet: An Efficient Two-Stage Intrusion Detection Model Based on Deep Learning
    Wu, Jiang
    Fu, Qiang
    Wang, Liang
    IEEE ACCESS, 2025, 13 : 2377 - 2388
  • [26] A two-stage intrusion detection system with auto-encoder and LSTMs
    Mushtaq, Earum
    Zameer, Aneela
    Umer, Muhammad
    Abbasi, Asima Akber
    APPLIED SOFT COMPUTING, 2022, 121
  • [27] A novel hybrid intrusion detection system (Ids) for the detection of internet of things (IoT) network attacks
    Ramadan R.A.
    Yadav K.
    Annals of Emerging Technologies in Computing, 2020, 4 (05) : 61 - 74
  • [28] An adaptive intrusion detection and prevention system for Internet of Things
    Bakhsh, Sheikh Tahir
    Alghamdi, Saleh
    Alsemmeari, Rayan A.
    Hassan, Syed Raheel
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2019, 15 (11)
  • [29] Toward a Lightweight Intrusion Detection System for the Internet of Things
    Jan, Sana Ullah
    Ahmed, Saeed
    Shakhov, Vladimir
    Koo, Insoo
    IEEE ACCESS, 2019, 7 : 42450 - 42471
  • [30] MidSiot: A Multistage Intrusion Detection System for Internet of Things
    Nguyen Dat-Thinh
    Ho Xuan-Ninh
    Le Kim-Hung
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022