Solar Interfacial Evaporation at the Water-Energy Nexus: Bottlenecks, Approaches, and Opportunities

被引:9
|
作者
Zhang, Xu [1 ,2 ]
Yang, Xiaotong [2 ]
Guo, Peixun [2 ]
Yao, Xingjie [2 ]
Cong, Haibing [1 ]
Xu, Bing [2 ]
机构
[1] Yangzhou Univ, Coll Architectural Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Shandong Jianzhu Univ, Sch Municipal & Environm Engn, Jinan 250101, Shandong, Peoples R China
关键词
fossil energy; nanomaterials; renewable energy; solar interfacial evaporation; sustainable environment; water-energy nexus; CARBON NANOTUBE ARRAYS; TO-HEAT CONVERSION; MEMBRANE DISTILLATION; STEAM-GENERATION; SEAWATER DESALINATION; PHOTOTHERMAL ABLATION; EFFICIENT; NANOPARTICLES; COST; CHALLENGES;
D O I
10.1002/solr.202201098
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar interfacial evaporation (SIE) technology has become an important research content in the water treatment fields gradually. It is low cost and sustainable, especially when water resources are scarce and energy infrastructure is not perfect and can deliver high-quality freshwater. In recent years, along with the rise of new nanomaterials, water evaporation efficiency improved further; additionally, the efficient evaporation system structure design and thermal managements can improve the absorbance and latent heat recovery efficiently. These advanced researches make SIE efficiency is enhanced markedly, especially in small water evaporation equipment driven by solar energy wholly. It can achieve extremely high steam generation rate and possess an extensive application prospect. In this critical review, the photothermal mechanisms and material types of new photothermal materials, the basic structural design requirements of SIE systems primarily are discussed. On this basis, the applications of SIE techniques in the water-energy relations from the microscopic scale to the molecular level in the past decade are summarized. Finally, bottlenecks of the development of SIE technology, as well as the approaches and opportunities in the future, are discussed critically, new ideas are provided for the long-range objective of utilizing renewable energy to generate clean water for environmentally sustainable development.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Visualizing water-energy nexus landscapes
    Robb, Douglas
    Cole, Harrison
    Baka, Jennifer
    Bakker, Karen
    WILEY INTERDISCIPLINARY REVIEWS-WATER, 2021, 8 (06):
  • [22] Modeling the water-energy nexus in households
    Hadengue, Bruno
    Scheidegger, Andreas
    Morgenroth, Eberhard
    Larsen, Tove A.
    ENERGY AND BUILDINGS, 2020, 225
  • [23] The Water-Energy Nexus in the American West
    Lasserre, Frederic
    ETUDES INTERNATIONALES, 2013, 44 (01): : 148 - 149
  • [24] Meeting the Needs of the Water-Energy Nexus
    Desai, Snehal
    Klanecky, David A.
    CHEMICAL ENGINEERING PROGRESS, 2011, 107 (04) : 22 - 27
  • [25] Evaluation of the effect of the water-energy nexus on the performance of the water-energy supply system
    Golfam, Parvin
    Ashofteh, Parisa-Sadat
    Environmental Science and Pollution Research, 2025, 32 (07) : 4040 - 4060
  • [26] WATER-ENERGY NEXUS Breaking the spell
    Davies, Evan G. R.
    NATURE ENERGY, 2018, 3 (09): : 716 - 717
  • [27] Technology and Engineering of the Water-Energy Nexus
    Rao, Prakash
    Kostecki, Robert
    Dale, Larry
    Gadgil, Ashok
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 42, 2017, 42 : 407 - 437
  • [28] Senate Examines Water-Energy Nexus
    不详
    MECHANICAL ENGINEERING, 2012, 134 (09) : 18 - 18
  • [29] Balancing the Scales with The Water-Energy Nexus
    McGowan, Mary Kate
    ASHRAE JOURNAL, 2017, 59 (09) : 40 - 42
  • [30] The role of water-energy nexus in optimising water supply systems - Review of techniques and approaches
    Vakilifard, Negar
    Anda, Martin
    Bahri, Parisa A.
    Ho, Goen
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 1424 - 1432