A Novel Machine-learning Model to Classify Schizophrenia Using Methylation Data Based on Gene Expression

被引:0
|
作者
Vijayakumar, Karthikeyan A. [1 ,2 ]
Cho, Gwang-Won [1 ,2 ,3 ]
机构
[1] Chosun Univ, Coll Nat Sci, Dept Biol Sci, 309 Pilmun Daero, Gwangju 501759, South Korea
[2] Chosun Univ, Dept Integrat Biol Sci, BK21 FOUR Educ Res Grp Age Associated Disorder Con, Gwangju 501759, South Korea
[3] Chosun Univ, Basic Sci Inst, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Schizophrenia; gene expression; DNA methylation; multi omics; machine learning; DNA METHYLATION; HYPOTHESIS; NORMALIZATION;
D O I
10.2174/0115748936293407240222113019
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Introduction The recent advancement in artificial intelligence has compelled medical research to adapt the technologies. The abundance of molecular data and AI technology has helped in explaining various diseases, even cancers. Schizophrenia is a complex neuropsychological disease whose etiology is unknown. Several gene-wide association studies attempted to narrow down the cause of the disease but did not successfully point out the mechanism behind the disease. There are studies regarding the epigenetic changes in the schizophrenia disease condition, and a classification machine-learning model has been trained using the blood methylation data.Methods In this study, we have demonstrated a novel approach to elucidating the molecular cause of the disease. We used a two-step machine-learning approach to determine the causal molecular markers. By doing so, we developed classification models using both gene expression microarray and methylation microarray data.Results Our models, because of our novel approach, achieved good classification accuracy with the available data size. We analyzed the important features, and they add up as evidence for the glutamate hypothesis of schizophrenia.Conclusion In this way, we have demonstrated explaining a disease through machine learning models.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 50 条
  • [21] A Practical Model for Traffic Forecasting based on Big Data, Machine-learning, and Network KPIs
    Le, Luong-Vy
    Sinh, Do
    Tung, Li-Ping
    Lin, Bao-Shuh Paul
    2018 15TH IEEE ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2018,
  • [22] Machine-Learning Model to Predict the Intradialytic Hypotension Based on Clinical-Analytical Data
    Mendoza-Pitti, Luis
    Manuel Gomez-Pulido, Jose
    Vargas-Lombardo, Miguel
    Gomez-Pulido, Juan A.
    Polo-Luque, Maria-Luz
    Rodriguez-Puyol, Diego
    IEEE ACCESS, 2022, 10 : 72065 - 72079
  • [23] A machine-learning model to predict suicide risk in Japan based on national survey data
    Chou, Po-Han
    Wang, Shao-Cheng
    Wu, Chi-Shin
    Horikoshi, Masaru
    Ito, Masaya
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [24] Machine-Learning Based Memory Prediction Model for Data Parallel Workloads in Apache Spark
    Myung, Rohyoung
    Choi, Sukyong
    SYMMETRY-BASEL, 2021, 13 (04):
  • [25] Gene expression data classification using topology and machine learning models
    Tamal K. Dey
    Sayan Mandal
    Soham Mukherjee
    BMC Bioinformatics, 22
  • [26] A Robust Procedure for Machine Learning Algorithms Using Gene Expression Data
    Auwul, Md Rabiul
    Zhang, Chongqi
    Shahjaman, Md
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (02): : 2422 - 2439
  • [27] Cancer Classification of Gene Expression Data using Machine Learning Models
    De Guia, Joseph M.
    Devaraj, Madhavi
    Vea, Larry A.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [28] Gene expression data classification using topology and machine learning models
    Dey, Tamal K.
    Mandal, Sayan
    Mukherjee, Soham
    BMC BIOINFORMATICS, 2022, 22 (SUPPL 10)
  • [29] Breast cancer prediction based on gene expression data using interpretable machine learning techniques
    Kallah-Dagadu, Gabriel
    Mohammed, Mohanad
    Nasejje, Justine B.
    Mchunu, Nobuhle Nokubonga
    Twabi, Halima S.
    Batidzirai, Jesca Mercy
    Singini, Geoffrey Chiyuzga
    Nevhungoni, Portia
    Maposa, Innocent
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Novel criteria to classify ARDS severity using a machine learning approach
    Mohammed Sayed
    David Riaño
    Jesús Villar
    Critical Care, 25