Deep learning-based state prediction of the Lorenz system with control parameters

被引:10
|
作者
Wang, Xiaolong [1 ]
Feng, Jing [3 ]
Xu, Yong [2 ,4 ]
Kurths, Juergen [5 ,6 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China
[3] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
[4] Northwestern Polytech Univ, MOE Key Lab Complex Sci Aerosp, Xian 710072, Peoples R China
[5] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
[6] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
基金
中国国家自然科学基金;
关键词
METASTABLE CHAOS; NEURAL-NETWORK;
D O I
10.1063/5.0187866
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear dynamical systems with control parameters may not be well modeled by shallow neural networks. In this paper, the stable fixed-point solutions, periodic and chaotic solutions of the parameter-dependent Lorenz system are learned simultaneously via a very deep neural network. The proposed deep learning model consists of a large number of identical linear layers, which provide excellent nonlinear mapping capability. Residual connections are applied to ease the flow of information and a large training dataset is further utilized. Extensive numerical results show that the chaotic solutions can be accurately forecasted for several Lyapunov times and long-term predictions are achieved for periodic solutions. Additionally, the dynamical characteristics such as bifurcation diagrams and largest Lyapunov exponents can be well recovered from the learned solutions. Finally, the principal factors contributing to the high prediction accuracy are discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] CommuNety: deep learning-based face recognition system for the prediction of cohesive communities
    Syed Afaq Ali Shah
    Weifeng Deng
    Muhammad Aamir Cheema
    Abdul Bais
    Multimedia Tools and Applications, 2023, 82 : 10641 - 10659
  • [22] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [23] Evaluation of Deep Learning-based prediction models in Microgrids
    Gyoeri, Alexey
    Niederau, Mathis
    Zeller, Violett
    Stich, Volker
    2019 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2019, : 95 - 99
  • [24] A Deep learning-based rainfall prediction for flood management
    Babar, Mohammad
    Rani, Maneeha
    Ali, Ihtisham
    2022 17TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET'22), 2022, : 196 - 199
  • [25] Deep Learning-Based Traffic Prediction for Network Optimization
    Troia, Sebastian
    Alvizu, Rodolfo
    Zhou, Youduo
    Maier, Guido
    Pattavina, Achille
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [26] A Survey of Deep Learning-Based Information Cascade Prediction
    Wang, Zhengang
    Wang, Xin
    Xiong, Fei
    Chen, Hongshu
    SYMMETRY-BASEL, 2024, 16 (11):
  • [27] A deep learning-based framework for road traffic prediction
    Benarmas, Redouane Benabdallah
    Bey, Kadda Beghdad
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (05): : 6891 - 6916
  • [28] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [29] DEEP LEARNING-BASED PERSONALIZED SURVIVAL PREDICTION FOR MEDULLOBLASTOMA
    Stefan, Sabina
    Northcott, Paul
    Hovestadt, Volker
    NEURO-ONCOLOGY, 2023, 25
  • [30] Deep Learning-Based Discrete Calibrated Survival Prediction
    Fuhlert, Patrick
    Ernst, Anne
    Dietrich, Esther
    Westhaeusser, Fabian
    Kloiber, Karin
    Bonn, Stefan
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 169 - 174