Application of physics-informed neural network in the analysis of hydrodynamic lubrication

被引:24
|
作者
Zhao, Yang [1 ]
Guo, Liang [2 ]
Wong, Patrick Pat Lam [3 ]
机构
[1] Shenzhen Polytech, Sch Automot & Transportat Engn, Shenzhen 518055, Peoples R China
[2] Shanghai Univ, Sch Mech Engn & Automat, Shanghai 200444, Peoples R China
[3] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
physics-informed neural network; hydrodynamic lubrication; slider bearing;
D O I
10.1007/s40544-022-0658-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The last decade has witnessed a surge of interest in artificial neural network in many different areas of scientific research. Despite the rapid expansion in the application of neural networks, few efforts have been carried out to introduce such a powerful tool into lubrication studies. Thus, this work aims to apply the physics-informed neural network (PINN) to the hydrodynamic lubrication analysis. The 2D Reynolds equation is solved. The PINN is a meshless method and does not require big data for network training compared with classical methods. Our results are consistent with those obtained by experiments and the finite element method. Hence, we envision that the PINN method will have great application potential in lubrication and bearing research.
引用
收藏
页码:1253 / 1264
页数:12
相关论文
共 50 条
  • [31] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [32] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [33] Acoustic scattering simulations via physics-informed neural network
    Nair, Siddharth
    Walsh, Timothy F.
    Pickrell, Gregory
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2024, 2024, 12949
  • [34] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [35] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [36] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    GEOPHYSICS, 2024, 89 (02) : M17 - M32
  • [37] A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography
    Olivieri, Marco
    Pezzoli, Mirco
    Antonacci, Fabio
    Sarti, Augusto
    SENSORS, 2021, 21 (23)
  • [38] Physics-informed convolutional neural network for microgrid economic dispatch
    Ge, Xiaoyu
    Khazaei, Javad
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40
  • [39] Neuromorphic, physics-informed spiking neural network for molecular dynamics
    Pham, Vuong Van
    Muther, Temoor
    Kalantari Dahaghi, Amirmasoud
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [40] Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation
    Lopez, Z. Sanchez
    Cortes, G. Berenice Diaz
    REVISTA MEXICANA DE FISICA, 2025, 71 (02)