Using generative artificial intelligence in bibliometric analysis: 10 years of research trends from the European Resuscitation Congresses

被引:2
|
作者
Fijacko, Nino [1 ,2 ,3 ]
Creber, Ruth Masterson [4 ]
Abella, Benjamin S. [5 ,6 ]
Kocbek, Primoz [1 ,7 ]
Metlicar, Spela [1 ,8 ]
Greif, Robert [2 ,9 ,10 ,11 ]
Stiglic, Gregor [1 ,12 ]
机构
[1] Univ Maribor, Fac Hlth Sci, Maribor 3000, Slovenia
[2] ERC Res Net, Niels, Belgium
[3] Univ Maribor, Med Ctr, Maribor, Slovenia
[4] Columbia Univ, Sch Nursing, New York, NY USA
[5] Univ Penn, Ctr Resuscitat Sci, Philadelphia, PA USA
[6] Univ Penn, Dept Emergency Med, Philadelphia, PA USA
[7] Univ Ljubljana, Fac Med, Ljubljana, Slovenia
[8] Univ Clin Ctr Ljubljana, Med Dispatch Ctr Maribor, Ljubljana, Slovenia
[9] Univ Bern, Bern, Switzerland
[10] Sigmund Freud Univ Vienna, Sch Med, Vienna, Austria
[11] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
[12] Univ Edinburgh, Usher Inst, Edinburgh, Scotland
来源
RESUSCITATION PLUS | 2024年 / 18卷
基金
美国国家卫生研究院;
关键词
Emergency medicine; European Resuscitation Council; Congress; Bibliometrics analysis; Generative artificial intelligence; COUNCIL GUIDELINES; CARDIAC-ARREST; EMERGENCY;
D O I
10.1016/j.resplu.2024.100584
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Aims: The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade. Methods: In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics. Results: From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence. Conclusion: This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Roles and Research Trends of Artificial Intelligence in Mathematics Education: A Bibliometric Mapping Analysis and Systematic Review
    Hwang, Gwo-Jen
    Tu, Yun-Fang
    MATHEMATICS, 2021, 9 (06)
  • [42] Bibliometric analysis of artificial intelligence applications in cardiovascular imaging: trends, impact, and emerging research areas
    Alotaibi, Abdulhadi
    Contreras, Rafael
    Thakker, Nisarg
    Mahapatro, Abinash
    Jala, Saisree Reddy Adla
    Mohanty, Elan
    Devulapally, Pavan
    Mirchandani, Mohit
    Marsool, Mohammed Dheyaa Marsool
    Jain, Shika M.
    Joukar, Farahnaz
    Alizadehasl, Azin
    Jebelli, Seyedeh Fatemeh Hosseini
    Amini-Salehi, Ehsan
    Ameen, Daniyal
    ANNALS OF MEDICINE AND SURGERY, 2025, 87 (04): : 1947 - 1968
  • [43] Uncovering Research Trends on Artificial Intelligence Risk Assessment in Businesses: A State-of-the-Art Perspective Using Bibliometric Analysis
    Muria-Tarazon, Juan Carlos
    Oltra-Gutierrez, Juan Vicente
    Oltra-Badenes, Raul
    Escobar-Roman, Santiago
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [44] Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis
    Satish Kumar
    Weng Marc Lim
    Uthayasankar Sivarajah
    Jaspreet Kaur
    Information Systems Frontiers, 2023, 25 : 871 - 896
  • [45] Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis
    Kumar, Satish
    Lim, Weng Marc
    Sivarajah, Uthayasankar
    Kaur, Jaspreet
    INFORMATION SYSTEMS FRONTIERS, 2023, 25 (02) : 871 - 896
  • [46] Global Trends in Research of Perioperative Analgesia Over Past 10 Years: A Bibliometric Analysis
    Zhou, Lian Zhen
    Li, Xuan
    Zhou, Li Min
    JOURNAL OF PAIN RESEARCH, 2023, 16 : 3491 - 3502
  • [47] Research output of artificial intelligence in arrhythmia from 2004 to 2021: a bibliometric analysis
    Huang, Junlin
    Liu, Yang
    Huang, Shuping
    Ke, Guibao
    Chen, Xin
    Gong, Bei
    Wei, Wei
    Xue, Yumei
    Deng, Hai
    Wu, Shulin
    JOURNAL OF THORACIC DISEASE, 2022, 14 (05) : 1411 - 1427
  • [48] Artificial intelligence in rheumatoid arthritis research: A bibliometric analysis from 2004 to 2023
    Liu, Yang
    Su, Yazhen
    Wu, Zewen
    Gao, Jinfang
    Gong, Xueyan
    Zhang, Liyun
    RHEUMATOLOGY & AUTOIMMUNITY, 2024, 4 (03): : 133 - 144
  • [49] Artificial Intelligence Literacy Research Field: A Bibliometric Analysis from 1989 to 2021
    Tenorio, Kamilla
    Olari, Viktoriya
    Chikobava, Margarita
    Romeike, Ralf
    PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 1, SIGCSE 2023, 2023, : 1083 - 1089
  • [50] Current Trends in Artificial Intelligence and Bovine Mastitis Research: A Bibliometric Review Approach
    Mitsunaga, Thatiane Mendes
    Garcia, Breno Luis Nery
    Pereira, Ligia Beatriz Rizzanti
    Costa, Yuri Campos Braga
    da Silva, Roberto Fray
    Delbem, Alexandre Claudio Botazzo
    dos Santos, Marcos Veiga
    ANIMALS, 2024, 14 (14):